#include "jemalloc/internal/jemalloc_preamble.h" #include "jemalloc/internal/jemalloc_internal_includes.h" #include "jemalloc/internal/hpa.h" #include "jemalloc/internal/flat_bitmap.h" #include "jemalloc/internal/witness.h" #define HPA_EDEN_SIZE (128 * HUGEPAGE) static edata_t *hpa_alloc(tsdn_t *tsdn, pai_t *self, size_t size, size_t alignment, bool zero); static bool hpa_expand(tsdn_t *tsdn, pai_t *self, edata_t *edata, size_t old_size, size_t new_size, bool zero); static bool hpa_shrink(tsdn_t *tsdn, pai_t *self, edata_t *edata, size_t old_size, size_t new_size); static void hpa_dalloc(tsdn_t *tsdn, pai_t *self, edata_t *edata); bool hpa_supported() { #ifdef _WIN32 /* * At least until the API and implementation is somewhat settled, we * don't want to try to debug the VM subsystem on the hardest-to-test * platform. */ return false; #endif if (!pages_can_hugify) { return false; } /* * We fundamentally rely on a address-space-hungry growth strategy for * hugepages. */ if (LG_SIZEOF_PTR != 3) { return false; } /* * If we couldn't detect the value of HUGEPAGE, HUGEPAGE_PAGES becomes * this sentinel value -- see the comment in pages.h. */ if (HUGEPAGE_PAGES == 1) { return false; } return true; } bool hpa_shard_init(hpa_shard_t *shard, emap_t *emap, base_t *base, edata_cache_t *edata_cache, unsigned ind, size_t alloc_max) { /* malloc_conf processing should have filtered out these cases. */ assert(hpa_supported()); bool err; err = malloc_mutex_init(&shard->grow_mtx, "hpa_shard_grow", WITNESS_RANK_HPA_SHARD_GROW, malloc_mutex_rank_exclusive); if (err) { return true; } err = malloc_mutex_init(&shard->mtx, "hpa_shard", WITNESS_RANK_HPA_SHARD, malloc_mutex_rank_exclusive); if (err) { return true; } assert(edata_cache != NULL); shard->base = base; edata_cache_small_init(&shard->ecs, edata_cache); psset_init(&shard->psset); shard->alloc_max = alloc_max; hpdata_list_init(&shard->unused_slabs); shard->age_counter = 0; shard->eden = NULL; shard->eden_len = 0; shard->ind = ind; shard->emap = emap; /* * Fill these in last, so that if an hpa_shard gets used despite * initialization failing, we'll at least crash instead of just * operating on corrupted data. */ shard->pai.alloc = &hpa_alloc; shard->pai.expand = &hpa_expand; shard->pai.shrink = &hpa_shrink; shard->pai.dalloc = &hpa_dalloc; return false; } /* * Note that the stats functions here follow the usual stats naming conventions; * "merge" obtains the stats from some live object of instance, while "accum" * only combines the stats from one stats objet to another. Hence the lack of * locking here. */ void hpa_shard_stats_accum(hpa_shard_stats_t *dst, hpa_shard_stats_t *src) { psset_stats_accum(&dst->psset_stats, &src->psset_stats); } void hpa_shard_stats_merge(tsdn_t *tsdn, hpa_shard_t *shard, hpa_shard_stats_t *dst) { malloc_mutex_lock(tsdn, &shard->mtx); psset_stats_accum(&dst->psset_stats, &shard->psset.stats); malloc_mutex_unlock(tsdn, &shard->mtx); } static hpdata_t * hpa_alloc_ps(tsdn_t *tsdn, hpa_shard_t *shard) { return (hpdata_t *)base_alloc(tsdn, shard->base, sizeof(hpdata_t), CACHELINE); } static bool hpa_should_hugify(hpa_shard_t *shard, hpdata_t *ps) { /* * For now, just use a static check; hugify a page if it's <= 5% * inactive. Eventually, this should be a malloc conf option. */ return !hpdata_huge_get(ps) && hpdata_nfree_get(ps) < (HUGEPAGE / PAGE) * 5 / 100; } /* Returns true on error. */ static void hpa_hugify(hpdata_t *ps) { assert(hpdata_huge_get(ps)); bool err = pages_huge(hpdata_addr_get(ps), HUGEPAGE); /* * Eat the error; even if the hugification failed, it's still safe to * pretend it didn't (and would require extraordinary measures to * unhugify). */ (void)err; } static void hpa_dehugify(hpdata_t *ps) { /* Purge, then dehugify while unbacked. */ pages_purge_forced(hpdata_addr_get(ps), HUGEPAGE); pages_nohuge(hpdata_addr_get(ps), HUGEPAGE); hpdata_huge_set(ps, false); } static hpdata_t * hpa_grow(tsdn_t *tsdn, hpa_shard_t *shard) { malloc_mutex_assert_owner(tsdn, &shard->grow_mtx); hpdata_t *ps = NULL; /* Is there address space waiting for reuse? */ malloc_mutex_assert_owner(tsdn, &shard->grow_mtx); ps = hpdata_list_first(&shard->unused_slabs); if (ps != NULL) { hpdata_list_remove(&shard->unused_slabs, ps); hpdata_age_set(ps, shard->age_counter++); return ps; } /* Is eden a perfect fit? */ if (shard->eden != NULL && shard->eden_len == HUGEPAGE) { ps = hpa_alloc_ps(tsdn, shard); if (ps == NULL) { return NULL; } hpdata_init(ps, shard->eden, shard->age_counter++); shard->eden = NULL; shard->eden_len = 0; return ps; } /* * We're about to try to allocate from eden by splitting. If eden is * NULL, we have to allocate it too. Otherwise, we just have to * allocate an edata_t for the new psset. */ if (shard->eden == NULL) { /* * During development, we're primarily concerned with systems * with overcommit. Eventually, we should be more careful here. */ bool commit = true; /* Allocate address space, bailing if we fail. */ void *new_eden = pages_map(NULL, HPA_EDEN_SIZE, HUGEPAGE, &commit); if (new_eden == NULL) { return NULL; } ps = hpa_alloc_ps(tsdn, shard); if (ps == NULL) { pages_unmap(new_eden, HPA_EDEN_SIZE); return NULL; } shard->eden = new_eden; shard->eden_len = HPA_EDEN_SIZE; } else { /* Eden is already nonempty; only need an edata for ps. */ ps = hpa_alloc_ps(tsdn, shard); if (ps == NULL) { return NULL; } } assert(ps != NULL); assert(shard->eden != NULL); assert(shard->eden_len > HUGEPAGE); assert(shard->eden_len % HUGEPAGE == 0); assert(HUGEPAGE_ADDR2BASE(shard->eden) == shard->eden); hpdata_init(ps, shard->eden, shard->age_counter++); char *eden_char = (char *)shard->eden; eden_char += HUGEPAGE; shard->eden = (void *)eden_char; shard->eden_len -= HUGEPAGE; return ps; } /* * The psset does not hold empty slabs. Upon becoming empty, then, we need to * put them somewhere. We take this as an opportunity to purge, and retain * their address space in a list outside the psset. */ static void hpa_handle_ps_eviction(tsdn_t *tsdn, hpa_shard_t *shard, hpdata_t *ps) { /* * We do relatively expensive system calls. The ps was evicted, so no * one should touch it while we're also touching it. */ malloc_mutex_assert_not_owner(tsdn, &shard->mtx); malloc_mutex_assert_not_owner(tsdn, &shard->grow_mtx); /* * We do this unconditionally, even for pages which were not originally * hugified; it has the same effect. */ hpa_dehugify(ps); malloc_mutex_lock(tsdn, &shard->grow_mtx); hpdata_list_prepend(&shard->unused_slabs, ps); malloc_mutex_unlock(tsdn, &shard->grow_mtx); } static edata_t * hpa_try_alloc_no_grow(tsdn_t *tsdn, hpa_shard_t *shard, size_t size, bool *oom) { bool err; malloc_mutex_lock(tsdn, &shard->mtx); edata_t *edata = edata_cache_small_get(tsdn, &shard->ecs); *oom = false; if (edata == NULL) { malloc_mutex_unlock(tsdn, &shard->mtx); *oom = true; return NULL; } assert(edata_arena_ind_get(edata) == shard->ind); hpdata_t *ps = psset_fit(&shard->psset, size); if (ps == NULL) { edata_cache_small_put(tsdn, &shard->ecs, edata); malloc_mutex_unlock(tsdn, &shard->mtx); return NULL; } psset_remove(&shard->psset, ps); void *addr = hpdata_reserve_alloc(ps, size); edata_init(edata, shard->ind, addr, size, /* slab */ false, SC_NSIZES, /* sn */ 0, extent_state_active, /* zeroed */ false, /* committed */ true, EXTENT_PAI_HPA, EXTENT_NOT_HEAD); edata_ps_set(edata, ps); /* * This could theoretically be moved outside of the critical section, * but that introduces the potential for a race. Without the lock, the * (initially nonempty, since this is the reuse pathway) pageslab we * allocated out of could become otherwise empty while the lock is * dropped. This would force us to deal with a pageslab eviction down * the error pathway, which is a pain. */ err = emap_register_boundary(tsdn, shard->emap, edata, SC_NSIZES, /* slab */ false); if (err) { hpdata_unreserve(ps, edata_addr_get(edata), edata_size_get(edata)); psset_insert(&shard->psset, ps); edata_cache_small_put(tsdn, &shard->ecs, edata); malloc_mutex_unlock(tsdn, &shard->mtx); *oom = true; return NULL; } bool hugify = hpa_should_hugify(shard, ps); if (hugify) { hpdata_huge_set(ps, true); } psset_insert(&shard->psset, ps); malloc_mutex_unlock(tsdn, &shard->mtx); if (hugify) { /* * Hugifying with the lock dropped is safe, even with * concurrent modifications to the ps. This relies on * the fact that the current implementation will never * dehugify a non-empty pageslab, and ps will never * become empty before we return edata to the user to be * freed. * * Note that holding the lock would prevent not just operations * on this page slab, but also operations any other alloc/dalloc * operations in this hpa shard. */ hpa_hugify(ps); } return edata; } static edata_t * hpa_alloc_psset(tsdn_t *tsdn, hpa_shard_t *shard, size_t size) { assert(size <= shard->alloc_max); bool err; bool oom; edata_t *edata; edata = hpa_try_alloc_no_grow(tsdn, shard, size, &oom); if (edata != NULL) { return edata; } /* Nothing in the psset works; we have to grow it. */ malloc_mutex_lock(tsdn, &shard->grow_mtx); /* * Check for grow races; maybe some earlier thread expanded the psset * in between when we dropped the main mutex and grabbed the grow mutex. */ edata = hpa_try_alloc_no_grow(tsdn, shard, size, &oom); if (edata != NULL || oom) { malloc_mutex_unlock(tsdn, &shard->grow_mtx); return edata; } /* * Note that we don't hold shard->mtx here (while growing); * deallocations (and allocations of smaller sizes) may still succeed * while we're doing this potentially expensive system call. */ hpdata_t *ps = hpa_grow(tsdn, shard); if (ps == NULL) { malloc_mutex_unlock(tsdn, &shard->grow_mtx); return NULL; } /* We got the new edata; allocate from it. */ malloc_mutex_lock(tsdn, &shard->mtx); edata = edata_cache_small_get(tsdn, &shard->ecs); if (edata == NULL) { malloc_mutex_unlock(tsdn, &shard->mtx); malloc_mutex_unlock(tsdn, &shard->grow_mtx); hpa_handle_ps_eviction(tsdn, shard, ps); return NULL; } void *addr = hpdata_reserve_alloc(ps, size); edata_init(edata, shard->ind, addr, size, /* slab */ false, SC_NSIZES, /* sn */ 0, extent_state_active, /* zeroed */ false, /* committed */ true, EXTENT_PAI_HPA, EXTENT_NOT_HEAD); edata_ps_set(edata, ps); err = emap_register_boundary(tsdn, shard->emap, edata, SC_NSIZES, /* slab */ false); if (err) { hpdata_unreserve(ps, edata_addr_get(edata), edata_size_get(edata)); edata_cache_small_put(tsdn, &shard->ecs, edata); /* * Technically the same as fallthrough at the time of this * writing, but consistent with the error handling in the rest * of the function. */ malloc_mutex_unlock(tsdn, &shard->mtx); malloc_mutex_unlock(tsdn, &shard->grow_mtx); hpa_handle_ps_eviction(tsdn, shard, ps); return NULL; } psset_insert(&shard->psset, ps); malloc_mutex_unlock(tsdn, &shard->mtx); malloc_mutex_unlock(tsdn, &shard->grow_mtx); return edata; } static hpa_shard_t * hpa_from_pai(pai_t *self) { assert(self->alloc = &hpa_alloc); assert(self->expand = &hpa_expand); assert(self->shrink = &hpa_shrink); assert(self->dalloc = &hpa_dalloc); return (hpa_shard_t *)self; } static edata_t * hpa_alloc(tsdn_t *tsdn, pai_t *self, size_t size, size_t alignment, bool zero) { assert((size & PAGE_MASK) == 0); witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn), WITNESS_RANK_CORE, 0); hpa_shard_t *shard = hpa_from_pai(self); /* We don't handle alignment or zeroing for now. */ if (alignment > PAGE || zero) { return NULL; } if (size > shard->alloc_max) { return NULL; } edata_t *edata = hpa_alloc_psset(tsdn, shard, size); witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn), WITNESS_RANK_CORE, 0); if (edata != NULL) { emap_assert_mapped(tsdn, shard->emap, edata); assert(edata_pai_get(edata) == EXTENT_PAI_HPA); assert(edata_state_get(edata) == extent_state_active); assert(edata_arena_ind_get(edata) == shard->ind); assert(edata_szind_get_maybe_invalid(edata) == SC_NSIZES); assert(!edata_slab_get(edata)); assert(edata_committed_get(edata)); assert(edata_base_get(edata) == edata_addr_get(edata)); assert(edata_base_get(edata) != NULL); } return edata; } static bool hpa_expand(tsdn_t *tsdn, pai_t *self, edata_t *edata, size_t old_size, size_t new_size, bool zero) { /* Expand not yet supported. */ return true; } static bool hpa_shrink(tsdn_t *tsdn, pai_t *self, edata_t *edata, size_t old_size, size_t new_size) { /* Shrink not yet supported. */ return true; } static void hpa_dalloc(tsdn_t *tsdn, pai_t *self, edata_t *edata) { hpa_shard_t *shard = hpa_from_pai(self); edata_addr_set(edata, edata_base_get(edata)); edata_zeroed_set(edata, false); assert(edata_pai_get(edata) == EXTENT_PAI_HPA); assert(edata_state_get(edata) == extent_state_active); assert(edata_arena_ind_get(edata) == shard->ind); assert(edata_szind_get_maybe_invalid(edata) == SC_NSIZES); assert(!edata_slab_get(edata)); assert(edata_committed_get(edata)); assert(edata_base_get(edata) != NULL); hpdata_t *ps = edata_ps_get(edata); /* Currently, all edatas come from pageslabs. */ assert(ps != NULL); emap_deregister_boundary(tsdn, shard->emap, edata); malloc_mutex_lock(tsdn, &shard->mtx); /* Note that the shard mutex protects ps's metadata too. */ psset_remove(&shard->psset, ps); hpdata_unreserve(ps, edata_addr_get(edata), edata_size_get(edata)); edata_cache_small_put(tsdn, &shard->ecs, edata); if (hpdata_empty(ps)) { malloc_mutex_unlock(tsdn, &shard->mtx); hpa_handle_ps_eviction(tsdn, shard, ps); } else { psset_insert(&shard->psset, ps); malloc_mutex_unlock(tsdn, &shard->mtx); } } void hpa_shard_disable(tsdn_t *tsdn, hpa_shard_t *shard) { malloc_mutex_lock(tsdn, &shard->mtx); edata_cache_small_disable(tsdn, &shard->ecs); malloc_mutex_unlock(tsdn, &shard->mtx); } static void hpa_shard_assert_stats_empty(psset_bin_stats_t *bin_stats) { assert(bin_stats->npageslabs_huge == 0); assert(bin_stats->nactive_huge == 0); assert(bin_stats->ninactive_huge == 0); assert(bin_stats->npageslabs_nonhuge == 0); assert(bin_stats->nactive_nonhuge == 0); assert(bin_stats->ninactive_nonhuge == 0); } static void hpa_assert_empty(tsdn_t *tsdn, hpa_shard_t *shard, psset_t *psset) { malloc_mutex_assert_owner(tsdn, &shard->mtx); hpdata_t *ps = psset_fit(psset, PAGE); assert(ps == NULL); hpa_shard_assert_stats_empty(&psset->stats.full_slabs); for (pszind_t i = 0; i < PSSET_NPSIZES; i++) { hpa_shard_assert_stats_empty( &psset->stats.nonfull_slabs[i]); } } void hpa_shard_destroy(tsdn_t *tsdn, hpa_shard_t *shard) { /* * By the time we're here, the arena code should have dalloc'd all the * active extents, which means we should have eventually evicted * everything from the psset, so it shouldn't be able to serve even a * 1-page allocation. */ if (config_debug) { malloc_mutex_lock(tsdn, &shard->mtx); hpa_assert_empty(tsdn, shard, &shard->psset); malloc_mutex_unlock(tsdn, &shard->mtx); } hpdata_t *ps; while ((ps = hpdata_list_first(&shard->unused_slabs)) != NULL) { hpdata_list_remove(&shard->unused_slabs, ps); pages_unmap(hpdata_addr_get(ps), HUGEPAGE); } } void hpa_shard_prefork3(tsdn_t *tsdn, hpa_shard_t *shard) { malloc_mutex_prefork(tsdn, &shard->grow_mtx); } void hpa_shard_prefork4(tsdn_t *tsdn, hpa_shard_t *shard) { malloc_mutex_prefork(tsdn, &shard->mtx); } void hpa_shard_postfork_parent(tsdn_t *tsdn, hpa_shard_t *shard) { malloc_mutex_postfork_parent(tsdn, &shard->grow_mtx); malloc_mutex_postfork_parent(tsdn, &shard->mtx); } void hpa_shard_postfork_child(tsdn_t *tsdn, hpa_shard_t *shard) { malloc_mutex_postfork_child(tsdn, &shard->grow_mtx); malloc_mutex_postfork_child(tsdn, &shard->mtx); }