01b3fe55ff
Add a0malloc(), a0calloc(), and a0free(), which are used by FreeBSD's libc to allocate/deallocate TLS in static binaries.
652 lines
20 KiB
C
652 lines
20 KiB
C
/******************************************************************************/
|
|
#ifdef JEMALLOC_H_TYPES
|
|
|
|
/*
|
|
* RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
|
|
* as small as possible such that this setting is still honored, without
|
|
* violating other constraints. The goal is to make runs as small as possible
|
|
* without exceeding a per run external fragmentation threshold.
|
|
*
|
|
* We use binary fixed point math for overhead computations, where the binary
|
|
* point is implicitly RUN_BFP bits to the left.
|
|
*
|
|
* Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
|
|
* honored for some/all object sizes, since when heap profiling is enabled
|
|
* there is one pointer of header overhead per object (plus a constant). This
|
|
* constraint is relaxed (ignored) for runs that are so small that the
|
|
* per-region overhead is greater than:
|
|
*
|
|
* (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
|
|
*/
|
|
#define RUN_BFP 12
|
|
/* \/ Implicit binary fixed point. */
|
|
#define RUN_MAX_OVRHD 0x0000003dU
|
|
#define RUN_MAX_OVRHD_RELAX 0x00001800U
|
|
|
|
/* Maximum number of regions in one run. */
|
|
#define LG_RUN_MAXREGS 11
|
|
#define RUN_MAXREGS (1U << LG_RUN_MAXREGS)
|
|
|
|
/*
|
|
* The minimum ratio of active:dirty pages per arena is computed as:
|
|
*
|
|
* (nactive >> opt_lg_dirty_mult) >= ndirty
|
|
*
|
|
* So, supposing that opt_lg_dirty_mult is 5, there can be no less than 32
|
|
* times as many active pages as dirty pages.
|
|
*/
|
|
#define LG_DIRTY_MULT_DEFAULT 5
|
|
|
|
typedef struct arena_chunk_map_s arena_chunk_map_t;
|
|
typedef struct arena_chunk_s arena_chunk_t;
|
|
typedef struct arena_run_s arena_run_t;
|
|
typedef struct arena_bin_info_s arena_bin_info_t;
|
|
typedef struct arena_bin_s arena_bin_t;
|
|
typedef struct arena_s arena_t;
|
|
|
|
#endif /* JEMALLOC_H_TYPES */
|
|
/******************************************************************************/
|
|
#ifdef JEMALLOC_H_STRUCTS
|
|
|
|
/* Each element of the chunk map corresponds to one page within the chunk. */
|
|
struct arena_chunk_map_s {
|
|
#ifndef JEMALLOC_PROF
|
|
/*
|
|
* Overlay prof_ctx in order to allow it to be referenced by dead code.
|
|
* Such antics aren't warranted for per arena data structures, but
|
|
* chunk map overhead accounts for a percentage of memory, rather than
|
|
* being just a fixed cost.
|
|
*/
|
|
union {
|
|
#endif
|
|
union {
|
|
/*
|
|
* Linkage for run trees. There are two disjoint uses:
|
|
*
|
|
* 1) arena_t's runs_avail_{clean,dirty} trees.
|
|
* 2) arena_run_t conceptually uses this linkage for in-use
|
|
* non-full runs, rather than directly embedding linkage.
|
|
*/
|
|
rb_node(arena_chunk_map_t) rb_link;
|
|
/*
|
|
* List of runs currently in purgatory. arena_chunk_purge()
|
|
* temporarily allocates runs that contain dirty pages while
|
|
* purging, so that other threads cannot use the runs while the
|
|
* purging thread is operating without the arena lock held.
|
|
*/
|
|
ql_elm(arena_chunk_map_t) ql_link;
|
|
} u;
|
|
|
|
/* Profile counters, used for large object runs. */
|
|
prof_ctx_t *prof_ctx;
|
|
#ifndef JEMALLOC_PROF
|
|
}; /* union { ... }; */
|
|
#endif
|
|
|
|
/*
|
|
* Run address (or size) and various flags are stored together. The bit
|
|
* layout looks like (assuming 32-bit system):
|
|
*
|
|
* ???????? ???????? ????---- ----dula
|
|
*
|
|
* ? : Unallocated: Run address for first/last pages, unset for internal
|
|
* pages.
|
|
* Small: Run page offset.
|
|
* Large: Run size for first page, unset for trailing pages.
|
|
* - : Unused.
|
|
* d : dirty?
|
|
* u : unzeroed?
|
|
* l : large?
|
|
* a : allocated?
|
|
*
|
|
* Following are example bit patterns for the three types of runs.
|
|
*
|
|
* p : run page offset
|
|
* s : run size
|
|
* c : (binind+1) for size class (used only if prof_promote is true)
|
|
* x : don't care
|
|
* - : 0
|
|
* + : 1
|
|
* [DULA] : bit set
|
|
* [dula] : bit unset
|
|
*
|
|
* Unallocated (clean):
|
|
* ssssssss ssssssss ssss---- ----du-a
|
|
* xxxxxxxx xxxxxxxx xxxx---- -----Uxx
|
|
* ssssssss ssssssss ssss---- ----dU-a
|
|
*
|
|
* Unallocated (dirty):
|
|
* ssssssss ssssssss ssss---- ----D--a
|
|
* xxxxxxxx xxxxxxxx xxxx---- ----xxxx
|
|
* ssssssss ssssssss ssss---- ----D--a
|
|
*
|
|
* Small:
|
|
* pppppppp pppppppp pppp---- ----d--A
|
|
* pppppppp pppppppp pppp---- -------A
|
|
* pppppppp pppppppp pppp---- ----d--A
|
|
*
|
|
* Large:
|
|
* ssssssss ssssssss ssss---- ----D-LA
|
|
* xxxxxxxx xxxxxxxx xxxx---- ----xxxx
|
|
* -------- -------- -------- ----D-LA
|
|
*
|
|
* Large (sampled, size <= PAGE):
|
|
* ssssssss ssssssss sssscccc ccccD-LA
|
|
*
|
|
* Large (not sampled, size == PAGE):
|
|
* ssssssss ssssssss ssss---- ----D-LA
|
|
*/
|
|
size_t bits;
|
|
#define CHUNK_MAP_CLASS_SHIFT 4
|
|
#define CHUNK_MAP_CLASS_MASK ((size_t)0xff0U)
|
|
#define CHUNK_MAP_FLAGS_MASK ((size_t)0xfU)
|
|
#define CHUNK_MAP_DIRTY ((size_t)0x8U)
|
|
#define CHUNK_MAP_UNZEROED ((size_t)0x4U)
|
|
#define CHUNK_MAP_LARGE ((size_t)0x2U)
|
|
#define CHUNK_MAP_ALLOCATED ((size_t)0x1U)
|
|
#define CHUNK_MAP_KEY CHUNK_MAP_ALLOCATED
|
|
};
|
|
typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
|
|
typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
|
|
|
|
/* Arena chunk header. */
|
|
struct arena_chunk_s {
|
|
/* Arena that owns the chunk. */
|
|
arena_t *arena;
|
|
|
|
/* Linkage for the arena's chunks_dirty list. */
|
|
ql_elm(arena_chunk_t) link_dirty;
|
|
|
|
/*
|
|
* True if the chunk is currently in the chunks_dirty list, due to
|
|
* having at some point contained one or more dirty pages. Removal
|
|
* from chunks_dirty is lazy, so (dirtied && ndirty == 0) is possible.
|
|
*/
|
|
bool dirtied;
|
|
|
|
/* Number of dirty pages. */
|
|
size_t ndirty;
|
|
|
|
/*
|
|
* Map of pages within chunk that keeps track of free/large/small. The
|
|
* first map_bias entries are omitted, since the chunk header does not
|
|
* need to be tracked in the map. This omission saves a header page
|
|
* for common chunk sizes (e.g. 4 MiB).
|
|
*/
|
|
arena_chunk_map_t map[1]; /* Dynamically sized. */
|
|
};
|
|
typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
|
|
|
|
struct arena_run_s {
|
|
/* Bin this run is associated with. */
|
|
arena_bin_t *bin;
|
|
|
|
/* Index of next region that has never been allocated, or nregs. */
|
|
uint32_t nextind;
|
|
|
|
/* Number of free regions in run. */
|
|
unsigned nfree;
|
|
};
|
|
|
|
/*
|
|
* Read-only information associated with each element of arena_t's bins array
|
|
* is stored separately, partly to reduce memory usage (only one copy, rather
|
|
* than one per arena), but mainly to avoid false cacheline sharing.
|
|
*/
|
|
struct arena_bin_info_s {
|
|
/* Size of regions in a run for this bin's size class. */
|
|
size_t reg_size;
|
|
|
|
/* Total size of a run for this bin's size class. */
|
|
size_t run_size;
|
|
|
|
/* Total number of regions in a run for this bin's size class. */
|
|
uint32_t nregs;
|
|
|
|
/*
|
|
* Offset of first bitmap_t element in a run header for this bin's size
|
|
* class.
|
|
*/
|
|
uint32_t bitmap_offset;
|
|
|
|
/*
|
|
* Metadata used to manipulate bitmaps for runs associated with this
|
|
* bin.
|
|
*/
|
|
bitmap_info_t bitmap_info;
|
|
|
|
/*
|
|
* Offset of first (prof_ctx_t *) in a run header for this bin's size
|
|
* class, or 0 if (config_prof == false || opt_prof == false).
|
|
*/
|
|
uint32_t ctx0_offset;
|
|
|
|
/* Offset of first region in a run for this bin's size class. */
|
|
uint32_t reg0_offset;
|
|
};
|
|
|
|
struct arena_bin_s {
|
|
/*
|
|
* All operations on runcur, runs, and stats require that lock be
|
|
* locked. Run allocation/deallocation are protected by the arena lock,
|
|
* which may be acquired while holding one or more bin locks, but not
|
|
* vise versa.
|
|
*/
|
|
malloc_mutex_t lock;
|
|
|
|
/*
|
|
* Current run being used to service allocations of this bin's size
|
|
* class.
|
|
*/
|
|
arena_run_t *runcur;
|
|
|
|
/*
|
|
* Tree of non-full runs. This tree is used when looking for an
|
|
* existing run when runcur is no longer usable. We choose the
|
|
* non-full run that is lowest in memory; this policy tends to keep
|
|
* objects packed well, and it can also help reduce the number of
|
|
* almost-empty chunks.
|
|
*/
|
|
arena_run_tree_t runs;
|
|
|
|
/* Bin statistics. */
|
|
malloc_bin_stats_t stats;
|
|
};
|
|
|
|
struct arena_s {
|
|
/* This arena's index within the arenas array. */
|
|
unsigned ind;
|
|
|
|
/*
|
|
* Number of threads currently assigned to this arena. This field is
|
|
* protected by arenas_lock.
|
|
*/
|
|
unsigned nthreads;
|
|
|
|
/*
|
|
* There are three classes of arena operations from a locking
|
|
* perspective:
|
|
* 1) Thread asssignment (modifies nthreads) is protected by
|
|
* arenas_lock.
|
|
* 2) Bin-related operations are protected by bin locks.
|
|
* 3) Chunk- and run-related operations are protected by this mutex.
|
|
*/
|
|
malloc_mutex_t lock;
|
|
|
|
arena_stats_t stats;
|
|
/*
|
|
* List of tcaches for extant threads associated with this arena.
|
|
* Stats from these are merged incrementally, and at exit.
|
|
*/
|
|
ql_head(tcache_t) tcache_ql;
|
|
|
|
uint64_t prof_accumbytes;
|
|
|
|
/* List of dirty-page-containing chunks this arena manages. */
|
|
ql_head(arena_chunk_t) chunks_dirty;
|
|
|
|
/*
|
|
* In order to avoid rapid chunk allocation/deallocation when an arena
|
|
* oscillates right on the cusp of needing a new chunk, cache the most
|
|
* recently freed chunk. The spare is left in the arena's chunk trees
|
|
* until it is deleted.
|
|
*
|
|
* There is one spare chunk per arena, rather than one spare total, in
|
|
* order to avoid interactions between multiple threads that could make
|
|
* a single spare inadequate.
|
|
*/
|
|
arena_chunk_t *spare;
|
|
|
|
/* Number of pages in active runs. */
|
|
size_t nactive;
|
|
|
|
/*
|
|
* Current count of pages within unused runs that are potentially
|
|
* dirty, and for which madvise(... MADV_DONTNEED) has not been called.
|
|
* By tracking this, we can institute a limit on how much dirty unused
|
|
* memory is mapped for each arena.
|
|
*/
|
|
size_t ndirty;
|
|
|
|
/*
|
|
* Approximate number of pages being purged. It is possible for
|
|
* multiple threads to purge dirty pages concurrently, and they use
|
|
* npurgatory to indicate the total number of pages all threads are
|
|
* attempting to purge.
|
|
*/
|
|
size_t npurgatory;
|
|
|
|
/*
|
|
* Size/address-ordered trees of this arena's available runs. The trees
|
|
* are used for first-best-fit run allocation. The dirty tree contains
|
|
* runs with dirty pages (i.e. very likely to have been touched and
|
|
* therefore have associated physical pages), whereas the clean tree
|
|
* contains runs with pages that either have no associated physical
|
|
* pages, or have pages that the kernel may recycle at any time due to
|
|
* previous madvise(2) calls. The dirty tree is used in preference to
|
|
* the clean tree for allocations, because using dirty pages reduces
|
|
* the amount of dirty purging necessary to keep the active:dirty page
|
|
* ratio below the purge threshold.
|
|
*/
|
|
arena_avail_tree_t runs_avail_clean;
|
|
arena_avail_tree_t runs_avail_dirty;
|
|
|
|
/* bins is used to store trees of free regions. */
|
|
arena_bin_t bins[NBINS];
|
|
};
|
|
|
|
#endif /* JEMALLOC_H_STRUCTS */
|
|
/******************************************************************************/
|
|
#ifdef JEMALLOC_H_EXTERNS
|
|
|
|
extern ssize_t opt_lg_dirty_mult;
|
|
/*
|
|
* small_size2bin is a compact lookup table that rounds request sizes up to
|
|
* size classes. In order to reduce cache footprint, the table is compressed,
|
|
* and all accesses are via the SMALL_SIZE2BIN macro.
|
|
*/
|
|
extern uint8_t const small_size2bin[];
|
|
#define SMALL_SIZE2BIN(s) (small_size2bin[(s-1) >> LG_TINY_MIN])
|
|
|
|
extern arena_bin_info_t arena_bin_info[NBINS];
|
|
|
|
/* Number of large size classes. */
|
|
#define nlclasses (chunk_npages - map_bias)
|
|
|
|
void arena_purge_all(arena_t *arena);
|
|
void arena_prof_accum(arena_t *arena, uint64_t accumbytes);
|
|
void arena_tcache_fill_small(arena_t *arena, tcache_bin_t *tbin,
|
|
size_t binind, uint64_t prof_accumbytes);
|
|
void *arena_malloc_small(arena_t *arena, size_t size, bool zero);
|
|
void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
|
|
void *arena_palloc(arena_t *arena, size_t size, size_t alloc_size,
|
|
size_t alignment, bool zero);
|
|
size_t arena_salloc(const void *ptr);
|
|
void arena_prof_promoted(const void *ptr, size_t size);
|
|
size_t arena_salloc_demote(const void *ptr);
|
|
void arena_dalloc_bin(arena_t *arena, arena_chunk_t *chunk, void *ptr,
|
|
arena_chunk_map_t *mapelm);
|
|
void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr);
|
|
void arena_stats_merge(arena_t *arena, size_t *nactive, size_t *ndirty,
|
|
arena_stats_t *astats, malloc_bin_stats_t *bstats,
|
|
malloc_large_stats_t *lstats);
|
|
void *arena_ralloc_no_move(void *ptr, size_t oldsize, size_t size,
|
|
size_t extra, bool zero);
|
|
void *arena_ralloc(void *ptr, size_t oldsize, size_t size, size_t extra,
|
|
size_t alignment, bool zero, bool try_tcache);
|
|
bool arena_new(arena_t *arena, unsigned ind);
|
|
void arena_boot(void);
|
|
void arena_prefork(arena_t *arena);
|
|
void arena_postfork_parent(arena_t *arena);
|
|
void arena_postfork_child(arena_t *arena);
|
|
|
|
#endif /* JEMALLOC_H_EXTERNS */
|
|
/******************************************************************************/
|
|
#ifdef JEMALLOC_H_INLINES
|
|
|
|
#ifndef JEMALLOC_ENABLE_INLINE
|
|
size_t arena_bin_index(arena_t *arena, arena_bin_t *bin);
|
|
unsigned arena_run_regind(arena_run_t *run, arena_bin_info_t *bin_info,
|
|
const void *ptr);
|
|
prof_ctx_t *arena_prof_ctx_get(const void *ptr);
|
|
void arena_prof_ctx_set(const void *ptr, prof_ctx_t *ctx);
|
|
void *arena_malloc(arena_t *arena, size_t size, bool zero, bool try_tcache);
|
|
void *arena_malloc_prechosen(arena_t *arena, size_t size, bool zero);
|
|
void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr,
|
|
bool try_tcache);
|
|
#endif
|
|
|
|
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_ARENA_C_))
|
|
JEMALLOC_INLINE size_t
|
|
arena_bin_index(arena_t *arena, arena_bin_t *bin)
|
|
{
|
|
size_t binind = bin - arena->bins;
|
|
assert(binind < NBINS);
|
|
return (binind);
|
|
}
|
|
|
|
JEMALLOC_INLINE unsigned
|
|
arena_run_regind(arena_run_t *run, arena_bin_info_t *bin_info, const void *ptr)
|
|
{
|
|
unsigned shift, diff, regind;
|
|
size_t size;
|
|
|
|
/*
|
|
* Freeing a pointer lower than region zero can cause assertion
|
|
* failure.
|
|
*/
|
|
assert((uintptr_t)ptr >= (uintptr_t)run +
|
|
(uintptr_t)bin_info->reg0_offset);
|
|
|
|
/*
|
|
* Avoid doing division with a variable divisor if possible. Using
|
|
* actual division here can reduce allocator throughput by over 20%!
|
|
*/
|
|
diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run -
|
|
bin_info->reg0_offset);
|
|
|
|
/* Rescale (factor powers of 2 out of the numerator and denominator). */
|
|
size = bin_info->reg_size;
|
|
shift = ffs(size) - 1;
|
|
diff >>= shift;
|
|
size >>= shift;
|
|
|
|
if (size == 1) {
|
|
/* The divisor was a power of 2. */
|
|
regind = diff;
|
|
} else {
|
|
/*
|
|
* To divide by a number D that is not a power of two we
|
|
* multiply by (2^21 / D) and then right shift by 21 positions.
|
|
*
|
|
* X / D
|
|
*
|
|
* becomes
|
|
*
|
|
* (X * size_invs[D - 3]) >> SIZE_INV_SHIFT
|
|
*
|
|
* We can omit the first three elements, because we never
|
|
* divide by 0, and 1 and 2 are both powers of two, which are
|
|
* handled above.
|
|
*/
|
|
#define SIZE_INV_SHIFT ((sizeof(unsigned) << 3) - LG_RUN_MAXREGS)
|
|
#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s)) + 1)
|
|
static const unsigned size_invs[] = {
|
|
SIZE_INV(3),
|
|
SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
|
|
SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
|
|
SIZE_INV(12), SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
|
|
SIZE_INV(16), SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
|
|
SIZE_INV(20), SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
|
|
SIZE_INV(24), SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
|
|
SIZE_INV(28), SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
|
|
};
|
|
|
|
if (size <= ((sizeof(size_invs) / sizeof(unsigned)) + 2))
|
|
regind = (diff * size_invs[size - 3]) >> SIZE_INV_SHIFT;
|
|
else
|
|
regind = diff / size;
|
|
#undef SIZE_INV
|
|
#undef SIZE_INV_SHIFT
|
|
}
|
|
assert(diff == regind * size);
|
|
assert(regind < bin_info->nregs);
|
|
|
|
return (regind);
|
|
}
|
|
|
|
JEMALLOC_INLINE prof_ctx_t *
|
|
arena_prof_ctx_get(const void *ptr)
|
|
{
|
|
prof_ctx_t *ret;
|
|
arena_chunk_t *chunk;
|
|
size_t pageind, mapbits;
|
|
|
|
cassert(config_prof);
|
|
assert(ptr != NULL);
|
|
assert(CHUNK_ADDR2BASE(ptr) != ptr);
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
|
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
|
|
mapbits = chunk->map[pageind-map_bias].bits;
|
|
assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
|
|
if ((mapbits & CHUNK_MAP_LARGE) == 0) {
|
|
if (prof_promote)
|
|
ret = (prof_ctx_t *)(uintptr_t)1U;
|
|
else {
|
|
arena_run_t *run = (arena_run_t *)((uintptr_t)chunk +
|
|
(uintptr_t)((pageind - (mapbits >> LG_PAGE)) <<
|
|
LG_PAGE));
|
|
size_t binind = arena_bin_index(chunk->arena, run->bin);
|
|
arena_bin_info_t *bin_info = &arena_bin_info[binind];
|
|
unsigned regind;
|
|
|
|
regind = arena_run_regind(run, bin_info, ptr);
|
|
ret = *(prof_ctx_t **)((uintptr_t)run +
|
|
bin_info->ctx0_offset + (regind *
|
|
sizeof(prof_ctx_t *)));
|
|
}
|
|
} else
|
|
ret = chunk->map[pageind-map_bias].prof_ctx;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
JEMALLOC_INLINE void
|
|
arena_prof_ctx_set(const void *ptr, prof_ctx_t *ctx)
|
|
{
|
|
arena_chunk_t *chunk;
|
|
size_t pageind, mapbits;
|
|
|
|
cassert(config_prof);
|
|
assert(ptr != NULL);
|
|
assert(CHUNK_ADDR2BASE(ptr) != ptr);
|
|
|
|
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
|
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
|
|
mapbits = chunk->map[pageind-map_bias].bits;
|
|
assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
|
|
if ((mapbits & CHUNK_MAP_LARGE) == 0) {
|
|
if (prof_promote == false) {
|
|
arena_run_t *run = (arena_run_t *)((uintptr_t)chunk +
|
|
(uintptr_t)((pageind - (mapbits >> LG_PAGE)) <<
|
|
LG_PAGE));
|
|
arena_bin_t *bin = run->bin;
|
|
size_t binind;
|
|
arena_bin_info_t *bin_info;
|
|
unsigned regind;
|
|
|
|
binind = arena_bin_index(chunk->arena, bin);
|
|
bin_info = &arena_bin_info[binind];
|
|
regind = arena_run_regind(run, bin_info, ptr);
|
|
|
|
*((prof_ctx_t **)((uintptr_t)run + bin_info->ctx0_offset
|
|
+ (regind * sizeof(prof_ctx_t *)))) = ctx;
|
|
} else
|
|
assert((uintptr_t)ctx == (uintptr_t)1U);
|
|
} else
|
|
chunk->map[pageind-map_bias].prof_ctx = ctx;
|
|
}
|
|
|
|
JEMALLOC_INLINE void *
|
|
arena_malloc(arena_t *arena, size_t size, bool zero, bool try_tcache)
|
|
{
|
|
tcache_t *tcache;
|
|
|
|
assert(size != 0);
|
|
assert(size <= arena_maxclass);
|
|
|
|
if (size <= SMALL_MAXCLASS) {
|
|
if (try_tcache && (tcache = tcache_get(true)) != NULL)
|
|
return (tcache_alloc_small(tcache, size, zero));
|
|
else {
|
|
return (arena_malloc_small(choose_arena(arena), size,
|
|
zero));
|
|
}
|
|
} else {
|
|
/*
|
|
* Initialize tcache after checking size in order to avoid
|
|
* infinite recursion during tcache initialization.
|
|
*/
|
|
if (try_tcache && size <= tcache_maxclass && (tcache =
|
|
tcache_get(true)) != NULL)
|
|
return (tcache_alloc_large(tcache, size, zero));
|
|
else {
|
|
return (arena_malloc_large(choose_arena(arena), size,
|
|
zero));
|
|
}
|
|
}
|
|
}
|
|
|
|
JEMALLOC_INLINE void *
|
|
arena_malloc_prechosen(arena_t *arena, size_t size, bool zero)
|
|
{
|
|
|
|
assert(size != 0);
|
|
assert(size <= arena_maxclass);
|
|
|
|
if (size <= SMALL_MAXCLASS)
|
|
return (arena_malloc_small(arena, size, zero));
|
|
else
|
|
return (arena_malloc_large(arena, size, zero));
|
|
}
|
|
|
|
JEMALLOC_INLINE void
|
|
arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr, bool try_tcache)
|
|
{
|
|
size_t pageind;
|
|
arena_chunk_map_t *mapelm;
|
|
tcache_t *tcache;
|
|
|
|
assert(arena != NULL);
|
|
assert(chunk->arena == arena);
|
|
assert(ptr != NULL);
|
|
assert(CHUNK_ADDR2BASE(ptr) != ptr);
|
|
|
|
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
|
|
mapelm = &chunk->map[pageind-map_bias];
|
|
assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
|
|
if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
|
|
/* Small allocation. */
|
|
if (try_tcache && (tcache = tcache_get(false)) != NULL)
|
|
tcache_dalloc_small(tcache, ptr);
|
|
else {
|
|
arena_run_t *run;
|
|
arena_bin_t *bin;
|
|
|
|
run = (arena_run_t *)((uintptr_t)chunk +
|
|
(uintptr_t)((pageind - (mapelm->bits >> LG_PAGE)) <<
|
|
LG_PAGE));
|
|
bin = run->bin;
|
|
if (config_debug) {
|
|
size_t binind = arena_bin_index(arena, bin);
|
|
UNUSED arena_bin_info_t *bin_info =
|
|
&arena_bin_info[binind];
|
|
assert(((uintptr_t)ptr - ((uintptr_t)run +
|
|
(uintptr_t)bin_info->reg0_offset)) %
|
|
bin_info->reg_size == 0);
|
|
}
|
|
malloc_mutex_lock(&bin->lock);
|
|
arena_dalloc_bin(arena, chunk, ptr, mapelm);
|
|
malloc_mutex_unlock(&bin->lock);
|
|
}
|
|
} else {
|
|
size_t size = mapelm->bits & ~PAGE_MASK;
|
|
|
|
assert(((uintptr_t)ptr & PAGE_MASK) == 0);
|
|
|
|
if (try_tcache && size <= tcache_maxclass && (tcache =
|
|
tcache_get(false)) != NULL) {
|
|
tcache_dalloc_large(tcache, ptr, size);
|
|
} else {
|
|
malloc_mutex_lock(&arena->lock);
|
|
arena_dalloc_large(arena, chunk, ptr);
|
|
malloc_mutex_unlock(&arena->lock);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#endif /* JEMALLOC_H_INLINES */
|
|
/******************************************************************************/
|