server-skynet-source-3rd-je.../include/jemalloc/internal/rtree_inlines.h
Qi Wang fde3e20cc0 Integrate auto tcache into TSD.
The embedded tcache is initialized upon tsd initialization.  The avail arrays
for the tbins will be allocated / deallocated accordingly during init / cleanup.

With this change, the pointer to the auto tcache will always be available, as
long as we have access to the TSD.  tcache_available() (called in tcache_get())
is provided to check if we should use tcache.
2017-04-07 09:55:14 -07:00

515 lines
18 KiB
C

#ifndef JEMALLOC_INTERNAL_RTREE_INLINES_H
#define JEMALLOC_INTERNAL_RTREE_INLINES_H
#ifndef JEMALLOC_ENABLE_INLINE
uintptr_t rtree_leafkey(uintptr_t key);
uintptr_t rtree_subkey(uintptr_t key, unsigned level);
# ifdef RTREE_LEAF_COMPACT
uintptr_t rtree_leaf_elm_bits_read(tsdn_t *tsdn, rtree_t *rtree,
rtree_leaf_elm_t *elm, bool acquired, bool dependent);
extent_t *rtree_leaf_elm_bits_extent_get(uintptr_t bits);
szind_t rtree_leaf_elm_bits_szind_get(uintptr_t bits);
bool rtree_leaf_elm_bits_slab_get(uintptr_t bits);
bool rtree_leaf_elm_bits_locked_get(uintptr_t bits);
# endif
extent_t *rtree_leaf_elm_extent_read(tsdn_t *tsdn, rtree_t *rtree,
rtree_leaf_elm_t *elm, bool acquired, bool dependent);
szind_t rtree_leaf_elm_szind_read(tsdn_t *tsdn, rtree_t *rtree,
rtree_leaf_elm_t *elm, bool acquired, bool dependent);
bool rtree_leaf_elm_slab_read(tsdn_t *tsdn, rtree_t *rtree,
rtree_leaf_elm_t *elm, bool acquired, bool dependent);
void rtree_leaf_elm_extent_write(tsdn_t *tsdn, rtree_t *rtree,
rtree_leaf_elm_t *elm, bool acquired, extent_t *extent);
void rtree_leaf_elm_szind_write(tsdn_t *tsdn, rtree_t *rtree,
rtree_leaf_elm_t *elm, bool acquired, szind_t szind);
void rtree_leaf_elm_slab_write(tsdn_t *tsdn, rtree_t *rtree,
rtree_leaf_elm_t *elm, bool acquired, bool slab);
void rtree_leaf_elm_write(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
bool acquired, extent_t *extent, szind_t szind, bool slab);
void rtree_leaf_elm_szind_slab_update(tsdn_t *tsdn, rtree_t *rtree,
rtree_leaf_elm_t *elm, szind_t szind, bool slab);
rtree_leaf_elm_t *rtree_leaf_elm_lookup(tsdn_t *tsdn, rtree_t *rtree,
rtree_ctx_t *rtree_ctx, uintptr_t key, bool dependent, bool init_missing);
bool rtree_write(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
uintptr_t key, extent_t *extent, szind_t szind, bool slab);
rtree_leaf_elm_t *rtree_read(tsdn_t *tsdn, rtree_t *rtree,
rtree_ctx_t *rtree_ctx, uintptr_t key, bool dependent);
extent_t *rtree_extent_read(tsdn_t *tsdn, rtree_t *rtree,
rtree_ctx_t *rtree_ctx, uintptr_t key, bool dependent);
szind_t rtree_szind_read(tsdn_t *tsdn, rtree_t *rtree,
rtree_ctx_t *rtree_ctx, uintptr_t key, bool dependent);
bool rtree_extent_szind_read(tsdn_t *tsdn, rtree_t *rtree,
rtree_ctx_t *rtree_ctx, uintptr_t key, bool dependent, extent_t **r_extent,
szind_t *r_szind);
bool rtree_szind_slab_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
uintptr_t key, bool dependent, szind_t *r_szind, bool *r_slab);
rtree_leaf_elm_t *rtree_leaf_elm_acquire(tsdn_t *tsdn, rtree_t *rtree,
rtree_ctx_t *rtree_ctx, uintptr_t key, bool dependent, bool init_missing);
void rtree_leaf_elm_release(tsdn_t *tsdn, rtree_t *rtree,
rtree_leaf_elm_t *elm);
void rtree_szind_slab_update(tsdn_t *tsdn, rtree_t *rtree,
rtree_ctx_t *rtree_ctx, uintptr_t key, szind_t szind, bool slab);
void rtree_clear(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
uintptr_t key);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_RTREE_C_))
JEMALLOC_ALWAYS_INLINE uintptr_t
rtree_leafkey(uintptr_t key) {
unsigned ptrbits = ZU(1) << (LG_SIZEOF_PTR+3);
unsigned cumbits = (rtree_levels[RTREE_HEIGHT-1].cumbits -
rtree_levels[RTREE_HEIGHT-1].bits);
unsigned maskbits = ptrbits - cumbits;
uintptr_t mask = ~((ZU(1) << maskbits) - 1);
return (key & mask);
}
JEMALLOC_ALWAYS_INLINE uintptr_t
rtree_subkey(uintptr_t key, unsigned level) {
unsigned ptrbits = ZU(1) << (LG_SIZEOF_PTR+3);
unsigned cumbits = rtree_levels[level].cumbits;
unsigned shiftbits = ptrbits - cumbits;
unsigned maskbits = rtree_levels[level].bits;
uintptr_t mask = (ZU(1) << maskbits) - 1;
return ((key >> shiftbits) & mask);
}
/*
* Atomic getters.
*
* dependent: Reading a value on behalf of a pointer to a valid allocation
* is guaranteed to be a clean read even without synchronization,
* because the rtree update became visible in memory before the
* pointer came into existence.
* !dependent: An arbitrary read, e.g. on behalf of ivsalloc(), may not be
* dependent on a previous rtree write, which means a stale read
* could result if synchronization were omitted here.
*/
# ifdef RTREE_LEAF_COMPACT
JEMALLOC_ALWAYS_INLINE uintptr_t
rtree_leaf_elm_bits_read(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
bool acquired, bool dependent) {
if (config_debug && acquired) {
assert(dependent);
rtree_leaf_elm_witness_access(tsdn, rtree, elm);
}
return (uintptr_t)atomic_load_p(&elm->le_bits, dependent
? ATOMIC_RELAXED : ATOMIC_ACQUIRE);
}
JEMALLOC_ALWAYS_INLINE extent_t *
rtree_leaf_elm_bits_extent_get(uintptr_t bits) {
/* Restore sign-extended high bits, mask slab and lock bits. */
return (extent_t *)((uintptr_t)((intptr_t)(bits << RTREE_NHIB) >>
RTREE_NHIB) & ~((uintptr_t)0x3));
}
JEMALLOC_ALWAYS_INLINE szind_t
rtree_leaf_elm_bits_szind_get(uintptr_t bits) {
return (szind_t)(bits >> LG_VADDR);
}
JEMALLOC_ALWAYS_INLINE bool
rtree_leaf_elm_bits_slab_get(uintptr_t bits) {
return (bool)((bits >> 1) & (uintptr_t)0x1);
}
JEMALLOC_ALWAYS_INLINE bool
rtree_leaf_elm_bits_locked_get(uintptr_t bits) {
return (bool)(bits & (uintptr_t)0x1);
}
# endif
JEMALLOC_ALWAYS_INLINE extent_t *
rtree_leaf_elm_extent_read(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
bool acquired, bool dependent) {
if (config_debug && acquired) {
assert(dependent);
rtree_leaf_elm_witness_access(tsdn, rtree, elm);
}
#ifdef RTREE_LEAF_COMPACT
uintptr_t bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm, acquired,
dependent);
assert(!acquired || rtree_leaf_elm_bits_locked_get(bits));
return rtree_leaf_elm_bits_extent_get(bits);
#else
extent_t *extent = (extent_t *)atomic_load_p(&elm->le_extent, dependent
? ATOMIC_RELAXED : ATOMIC_ACQUIRE);
assert(!acquired || ((uintptr_t)extent & (uintptr_t)0x1) ==
(uintptr_t)0x1);
/* Mask lock bit. */
extent = (extent_t *)((uintptr_t)extent & ~((uintptr_t)0x1));
return extent;
#endif
}
JEMALLOC_ALWAYS_INLINE szind_t
rtree_leaf_elm_szind_read(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
bool acquired, bool dependent) {
if (config_debug && acquired) {
assert(dependent);
rtree_leaf_elm_witness_access(tsdn, rtree, elm);
}
#ifdef RTREE_LEAF_COMPACT
uintptr_t bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm, acquired,
dependent);
assert(!acquired || rtree_leaf_elm_bits_locked_get(bits));
return rtree_leaf_elm_bits_szind_get(bits);
#else
return (szind_t)atomic_load_u(&elm->le_szind, dependent ? ATOMIC_RELAXED
: ATOMIC_ACQUIRE);
#endif
}
JEMALLOC_ALWAYS_INLINE bool
rtree_leaf_elm_slab_read(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
bool acquired, bool dependent) {
if (config_debug && acquired) {
assert(dependent);
rtree_leaf_elm_witness_access(tsdn, rtree, elm);
}
#ifdef RTREE_LEAF_COMPACT
uintptr_t bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm, acquired,
dependent);
assert(!acquired || rtree_leaf_elm_bits_locked_get(bits));
return rtree_leaf_elm_bits_slab_get(bits);
#else
return atomic_load_b(&elm->le_slab, dependent ? ATOMIC_RELAXED :
ATOMIC_ACQUIRE);
#endif
}
JEMALLOC_INLINE void
rtree_leaf_elm_extent_write(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
bool acquired, extent_t *extent) {
if (config_debug && acquired) {
rtree_leaf_elm_witness_access(tsdn, rtree, elm);
}
assert(((uintptr_t)extent & (uintptr_t)0x1) == (uintptr_t)0x0);
#ifdef RTREE_LEAF_COMPACT
uintptr_t old_bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm,
acquired, acquired);
uintptr_t bits = ((uintptr_t)rtree_leaf_elm_bits_szind_get(old_bits) <<
LG_VADDR) | ((uintptr_t)extent & (((uintptr_t)0x1 << LG_VADDR) - 1))
| ((uintptr_t)rtree_leaf_elm_bits_slab_get(old_bits) << 1) |
(uintptr_t)acquired;
atomic_store_p(&elm->le_bits, (void *)bits, ATOMIC_RELEASE);
#else
if (acquired) {
/* Overlay lock bit. */
extent = (extent_t *)((uintptr_t)extent | (uintptr_t)0x1);
}
atomic_store_p(&elm->le_extent, extent, ATOMIC_RELEASE);
#endif
}
JEMALLOC_INLINE void
rtree_leaf_elm_szind_write(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
bool acquired, szind_t szind) {
if (config_debug && acquired) {
rtree_leaf_elm_witness_access(tsdn, rtree, elm);
}
assert(szind <= NSIZES);
#ifdef RTREE_LEAF_COMPACT
uintptr_t old_bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm,
acquired, acquired);
uintptr_t bits = ((uintptr_t)szind << LG_VADDR) |
((uintptr_t)rtree_leaf_elm_bits_extent_get(old_bits) &
(((uintptr_t)0x1 << LG_VADDR) - 1)) |
((uintptr_t)rtree_leaf_elm_bits_slab_get(old_bits) << 1) |
(uintptr_t)acquired;
atomic_store_p(&elm->le_bits, (void *)bits, ATOMIC_RELEASE);
#else
atomic_store_u(&elm->le_szind, szind, ATOMIC_RELEASE);
#endif
}
JEMALLOC_INLINE void
rtree_leaf_elm_slab_write(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
bool acquired, bool slab) {
if (config_debug && acquired) {
rtree_leaf_elm_witness_access(tsdn, rtree, elm);
}
#ifdef RTREE_LEAF_COMPACT
uintptr_t old_bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm,
acquired, acquired);
uintptr_t bits = ((uintptr_t)rtree_leaf_elm_bits_szind_get(old_bits) <<
LG_VADDR) | ((uintptr_t)rtree_leaf_elm_bits_extent_get(old_bits) &
(((uintptr_t)0x1 << LG_VADDR) - 1)) | ((uintptr_t)slab << 1) |
(uintptr_t)acquired;
atomic_store_p(&elm->le_bits, (void *)bits, ATOMIC_RELEASE);
#else
atomic_store_b(&elm->le_slab, slab, ATOMIC_RELEASE);
#endif
}
JEMALLOC_INLINE void
rtree_leaf_elm_write(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm,
bool acquired, extent_t *extent, szind_t szind, bool slab) {
if (config_debug && acquired) {
rtree_leaf_elm_witness_access(tsdn, rtree, elm);
}
assert(!slab || szind < NBINS);
#ifdef RTREE_LEAF_COMPACT
uintptr_t bits = ((uintptr_t)szind << LG_VADDR) |
((uintptr_t)extent & (((uintptr_t)0x1 << LG_VADDR) - 1)) |
((uintptr_t)slab << 1) |
(uintptr_t)acquired;
atomic_store_p(&elm->le_bits, (void *)bits, ATOMIC_RELEASE);
#else
rtree_leaf_elm_slab_write(tsdn, rtree, elm, acquired, slab);
rtree_leaf_elm_szind_write(tsdn, rtree, elm, acquired, szind);
/*
* Write extent last, since the element is atomically considered valid
* as soon as the extent field is non-NULL.
*/
rtree_leaf_elm_extent_write(tsdn, rtree, elm, acquired, extent);
#endif
}
JEMALLOC_INLINE void
rtree_leaf_elm_szind_slab_update(tsdn_t *tsdn, rtree_t *rtree,
rtree_leaf_elm_t *elm, szind_t szind, bool slab) {
assert(!slab || szind < NBINS);
/*
* The caller implicitly assures that it is the only writer to the szind
* and slab fields, and that the extent field cannot currently change.
*/
#ifdef RTREE_LEAF_COMPACT
/*
* Another thread may concurrently acquire the elm, which means that
* even though the szind and slab fields will not be concurrently
* modified by another thread, the fact that the lock is embedded in the
* same word requires that a CAS operation be used here.
*/
uintptr_t old_bits = rtree_leaf_elm_bits_read(tsdn, rtree, elm, false,
true) & ~((uintptr_t)0x1); /* Mask lock bit. */
uintptr_t bits = ((uintptr_t)szind << LG_VADDR) |
((uintptr_t)rtree_leaf_elm_bits_extent_get(old_bits) &
(((uintptr_t)0x1 << LG_VADDR) - 1)) |
((uintptr_t)slab << 1);
spin_t spinner = SPIN_INITIALIZER;
while (true) {
if (likely(atomic_compare_exchange_strong_p(&elm->le_bits,
(void **)&old_bits, (void *)bits, ATOMIC_ACQUIRE,
ATOMIC_RELAXED))) {
break;
}
spin_adaptive(&spinner);
}
#else
/* No need to lock. */
rtree_leaf_elm_slab_write(tsdn, rtree, elm, false, slab);
rtree_leaf_elm_szind_write(tsdn, rtree, elm, false, szind);
#endif
}
JEMALLOC_ALWAYS_INLINE rtree_leaf_elm_t *
rtree_leaf_elm_lookup(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
uintptr_t key, bool dependent, bool init_missing) {
assert(key != 0);
assert(!dependent || !init_missing);
uintptr_t leafkey = rtree_leafkey(key);
assert(leafkey != RTREE_LEAFKEY_INVALID);
#define RTREE_CACHE_CHECK(i) do { \
if (likely(rtree_ctx->cache[i].leafkey == leafkey)) { \
rtree_leaf_elm_t *leaf = rtree_ctx->cache[i].leaf; \
assert(leaf != NULL); \
if (i > 0) { \
/* Bubble up by one. */ \
rtree_ctx->cache[i].leafkey = \
rtree_ctx->cache[i - 1].leafkey; \
rtree_ctx->cache[i].leaf = \
rtree_ctx->cache[i - 1].leaf; \
rtree_ctx->cache[i - 1].leafkey = leafkey; \
rtree_ctx->cache[i - 1].leaf = leaf; \
} \
uintptr_t subkey = rtree_subkey(key, RTREE_HEIGHT-1); \
return &leaf[subkey]; \
} \
} while (0)
/* Check the first cache entry. */
RTREE_CACHE_CHECK(0);
/*
* Search the remaining cache elements, and on success move the matching
* element up by one slot.
*/
for (unsigned i = 1; i < RTREE_CTX_NCACHE; i++) {
RTREE_CACHE_CHECK(i);
}
#undef RTREE_CACHE_CHECK
return rtree_leaf_elm_lookup_hard(tsdn, rtree, rtree_ctx, key,
dependent, init_missing);
}
JEMALLOC_INLINE bool
rtree_write(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx, uintptr_t key,
extent_t *extent, szind_t szind, bool slab) {
/* Use rtree_clear() to set the extent to NULL. */
assert(extent != NULL);
rtree_leaf_elm_t *elm = rtree_leaf_elm_lookup(tsdn, rtree, rtree_ctx,
key, false, true);
if (elm == NULL) {
return true;
}
assert(rtree_leaf_elm_extent_read(tsdn, rtree, elm, false, false) ==
NULL);
rtree_leaf_elm_write(tsdn, rtree, elm, false, extent, szind, slab);
return false;
}
JEMALLOC_ALWAYS_INLINE rtree_leaf_elm_t *
rtree_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx, uintptr_t key,
bool dependent) {
rtree_leaf_elm_t *elm = rtree_leaf_elm_lookup(tsdn, rtree, rtree_ctx,
key, dependent, false);
if (!dependent && elm == NULL) {
return NULL;
}
assert(elm != NULL);
return elm;
}
JEMALLOC_ALWAYS_INLINE extent_t *
rtree_extent_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
uintptr_t key, bool dependent) {
rtree_leaf_elm_t *elm = rtree_read(tsdn, rtree, rtree_ctx, key,
dependent);
if (!dependent && elm == NULL) {
return NULL;
}
return rtree_leaf_elm_extent_read(tsdn, rtree, elm, false, dependent);
}
JEMALLOC_ALWAYS_INLINE szind_t
rtree_szind_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
uintptr_t key, bool dependent) {
rtree_leaf_elm_t *elm = rtree_read(tsdn, rtree, rtree_ctx, key,
dependent);
if (!dependent && elm == NULL) {
return NSIZES;
}
return rtree_leaf_elm_szind_read(tsdn, rtree, elm, false, dependent);
}
/*
* rtree_slab_read() is intentionally omitted because slab is always read in
* conjunction with szind, which makes rtree_szind_slab_read() a better choice.
*/
JEMALLOC_ALWAYS_INLINE bool
rtree_extent_szind_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
uintptr_t key, bool dependent, extent_t **r_extent, szind_t *r_szind) {
rtree_leaf_elm_t *elm = rtree_read(tsdn, rtree, rtree_ctx, key,
dependent);
if (!dependent && elm == NULL) {
return true;
}
*r_extent = rtree_leaf_elm_extent_read(tsdn, rtree, elm, false,
dependent);
*r_szind = rtree_leaf_elm_szind_read(tsdn, rtree, elm, false,
dependent);
return false;
}
JEMALLOC_ALWAYS_INLINE bool
rtree_szind_slab_read(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
uintptr_t key, bool dependent, szind_t *r_szind, bool *r_slab) {
rtree_leaf_elm_t *elm = rtree_read(tsdn, rtree, rtree_ctx, key,
dependent);
if (!dependent && elm == NULL) {
return true;
}
*r_szind = rtree_leaf_elm_szind_read(tsdn, rtree, elm, false,
dependent);
*r_slab = rtree_leaf_elm_slab_read(tsdn, rtree, elm, false, dependent);
return false;
}
JEMALLOC_INLINE rtree_leaf_elm_t *
rtree_leaf_elm_acquire(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
uintptr_t key, bool dependent, bool init_missing) {
rtree_leaf_elm_t *elm = rtree_leaf_elm_lookup(tsdn, rtree, rtree_ctx,
key, dependent, init_missing);
if (!dependent && elm == NULL) {
return NULL;
}
assert(elm != NULL);
spin_t spinner = SPIN_INITIALIZER;
while (true) {
/* The least significant bit serves as a lock. */
#ifdef RTREE_LEAF_COMPACT
# define RTREE_FIELD_WITH_LOCK le_bits
#else
# define RTREE_FIELD_WITH_LOCK le_extent
#endif
void *bits = atomic_load_p(&elm->RTREE_FIELD_WITH_LOCK,
ATOMIC_RELAXED);
if (likely(((uintptr_t)bits & (uintptr_t)0x1) == 0)) {
void *locked = (void *)((uintptr_t)bits |
(uintptr_t)0x1);
if (likely(atomic_compare_exchange_strong_p(
&elm->RTREE_FIELD_WITH_LOCK, &bits, locked,
ATOMIC_ACQUIRE, ATOMIC_RELAXED))) {
break;
}
}
spin_adaptive(&spinner);
#undef RTREE_FIELD_WITH_LOCK
}
if (config_debug) {
rtree_leaf_elm_witness_acquire(tsdn, rtree, key, elm);
}
return elm;
}
JEMALLOC_INLINE void
rtree_leaf_elm_release(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *elm) {
extent_t *extent = rtree_leaf_elm_extent_read(tsdn, rtree, elm, true,
true);
rtree_leaf_elm_extent_write(tsdn, rtree, elm, false, extent);
if (config_debug) {
rtree_leaf_elm_witness_release(tsdn, rtree, elm);
}
}
JEMALLOC_INLINE void
rtree_szind_slab_update(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
uintptr_t key, szind_t szind, bool slab) {
assert(!slab || szind < NBINS);
rtree_leaf_elm_t *elm = rtree_read(tsdn, rtree, rtree_ctx, key, true);
rtree_leaf_elm_szind_slab_update(tsdn, rtree, elm, szind, slab);
}
JEMALLOC_INLINE void
rtree_clear(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
uintptr_t key) {
rtree_leaf_elm_t *elm = rtree_read(tsdn, rtree, rtree_ctx, key, true);
assert(rtree_leaf_elm_extent_read(tsdn, rtree, elm, false, false) !=
NULL);
rtree_leaf_elm_write(tsdn, rtree, elm, false, NULL, NSIZES, false);
}
#endif
#endif /* JEMALLOC_INTERNAL_RTREE_INLINES_H */