server-skynet-source-3rd-je.../include/jemalloc/internal/hpdata.h
David Goldblatt 0f6c420f83 HPA: Make purging/hugifying more principled.
Before this change, purge/hugify decisions had several sharp edges that could
lead to pathological behavior if tuning parameters weren't carefully chosen.
It's the first of a series; this introduces basic "make every hugepage with
dirty pages purgeable" functionality, and the next commit expands that
functionality to have a smarter policy for picking hugepages to purge.

Previously, the dehugify logic would *never* dehugify a hugepage unless it was
dirtier than the dehugification threshold.  This can lead to situations in which
these pages (which themselves could never be purged) would push us above the
maximum allowed dirty pages in the shard.  This forces immediate purging of any
pages deallocated in non-hugified hugepages, which in turn places nonobvious
practical limitations on the relationships between various config settings.

Instead, we make our preference not to dehugify to purge a soft one rather than
a hard one.  We'll avoid purging them, but only so long as we can do so by
purging non-hugified pages.  If we need to purge them to satisfy our dirty page
limits, or to hugify other, more worthy candidates, we'll still do so.
2021-02-19 15:10:54 -08:00

448 lines
13 KiB
C

#ifndef JEMALLOC_INTERNAL_HPDATA_H
#define JEMALLOC_INTERNAL_HPDATA_H
#include "jemalloc/internal/flat_bitmap.h"
#include "jemalloc/internal/ph.h"
#include "jemalloc/internal/ql.h"
#include "jemalloc/internal/typed_list.h"
/*
* How badly we want to purge some region of memory. This is a temporary
* definition; it gets deleted in the next commit (where we adopt a more
* explicit dirtiest-first policy that only considers hugification status).
*/
enum hpdata_purge_level_e {
/*
* The level number is important -- we use it as indices into an array
* of size 2 (one for each purge level).
*/
/* "Regular" candidates for purging. */
hpdata_purge_level_default = 0,
/*
* Candidates for purging, but as a last resort. Practically,
* nonpreferred corresponds to hugified regions that are below the
* hugification threshold but have not yet reached the dehugification
* threshold, while strongly nonpreferred candidates are those which are
* above the hugification threshold.
*/
hpdata_purge_level_nonpreferred = 1,
hpdata_purge_level_strongly_nonpreferred = 2,
/* Don't purge, no matter what. */
hpdata_purge_level_never = 2,
/*
* How big an array has to be to accomodate all purge levels. This
* relies on the fact that we don't actually keep unpurgable hpdatas in
* a container.
*/
hpdata_purge_level_count = hpdata_purge_level_never
};
typedef enum hpdata_purge_level_e hpdata_purge_level_t;
/*
* The metadata representation we use for extents in hugepages. While the PAC
* uses the edata_t to represent both active and inactive extents, the HP only
* uses the edata_t for active ones; instead, inactive extent state is tracked
* within hpdata associated with the enclosing hugepage-sized, hugepage-aligned
* region of virtual address space.
*
* An hpdata need not be "truly" backed by a hugepage (which is not necessarily
* an observable property of any given region of address space). It's just
* hugepage-sized and hugepage-aligned; it's *potentially* huge.
*/
typedef struct hpdata_s hpdata_t;
struct hpdata_s {
/*
* We likewise follow the edata convention of mangling names and forcing
* the use of accessors -- this lets us add some consistency checks on
* access.
*/
/*
* The address of the hugepage in question. This can't be named h_addr,
* since that conflicts with a macro defined in Windows headers.
*/
void *h_address;
/* Its age (measured in psset operations). */
uint64_t h_age;
/* Whether or not we think the hugepage is mapped that way by the OS. */
bool h_huge;
/*
* For some properties, we keep parallel sets of bools; h_foo_allowed
* and h_in_psset_foo_container. This is a decoupling mechanism to
* avoid bothering the hpa (which manages policies) from the psset
* (which is the mechanism used to enforce those policies). This allows
* all the container management logic to live in one place, without the
* HPA needing to know or care how that happens.
*/
/*
* Whether or not the hpdata is allowed to be used to serve allocations,
* and whether or not the psset is currently tracking it as such.
*/
bool h_alloc_allowed;
bool h_in_psset_alloc_container;
/* The same, but with purging. */
uint8_t h_purge_level;
uint8_t h_purge_container_level;
/* And with hugifying. */
bool h_hugify_allowed;
bool h_in_psset_hugify_container;
/* Whether or not a purge or hugify is currently happening. */
bool h_mid_purge;
bool h_mid_hugify;
/*
* Whether or not the hpdata is being updated in the psset (i.e. if
* there has been a psset_update_begin call issued without a matching
* psset_update_end call). Eventually this will expand to other types
* of updates.
*/
bool h_updating;
/* Whether or not the hpdata is in a psset. */
bool h_in_psset;
union {
/* When nonempty (and also nonfull), used by the psset bins. */
phn(hpdata_t) ph_link;
/*
* When empty (or not corresponding to any hugepage), list
* linkage.
*/
ql_elm(hpdata_t) ql_link_empty;
};
/*
* Linkage for the psset to track candidates for purging and hugifying.
*/
ql_elm(hpdata_t) ql_link_purge;
ql_elm(hpdata_t) ql_link_hugify;
/* The length of the largest contiguous sequence of inactive pages. */
size_t h_longest_free_range;
/* Number of active pages. */
size_t h_nactive;
/* A bitmap with bits set in the active pages. */
fb_group_t active_pages[FB_NGROUPS(HUGEPAGE_PAGES)];
/*
* Number of dirty or active pages, and a bitmap tracking them. One
* way to think of this is as which pages are dirty from the OS's
* perspective.
*/
size_t h_ntouched;
/* The dirty pages (using the same definition as above). */
fb_group_t touched_pages[FB_NGROUPS(HUGEPAGE_PAGES)];
};
TYPED_LIST(hpdata_empty_list, hpdata_t, ql_link_empty)
TYPED_LIST(hpdata_purge_list, hpdata_t, ql_link_purge)
TYPED_LIST(hpdata_hugify_list, hpdata_t, ql_link_hugify)
typedef ph(hpdata_t) hpdata_age_heap_t;
ph_proto(, hpdata_age_heap_, hpdata_age_heap_t, hpdata_t);
static inline void *
hpdata_addr_get(const hpdata_t *hpdata) {
return hpdata->h_address;
}
static inline void
hpdata_addr_set(hpdata_t *hpdata, void *addr) {
assert(HUGEPAGE_ADDR2BASE(addr) == addr);
hpdata->h_address = addr;
}
static inline uint64_t
hpdata_age_get(const hpdata_t *hpdata) {
return hpdata->h_age;
}
static inline void
hpdata_age_set(hpdata_t *hpdata, uint64_t age) {
hpdata->h_age = age;
}
static inline bool
hpdata_huge_get(const hpdata_t *hpdata) {
return hpdata->h_huge;
}
static inline bool
hpdata_alloc_allowed_get(const hpdata_t *hpdata) {
return hpdata->h_alloc_allowed;
}
static inline void
hpdata_alloc_allowed_set(hpdata_t *hpdata, bool alloc_allowed) {
hpdata->h_alloc_allowed = alloc_allowed;
}
static inline bool
hpdata_in_psset_alloc_container_get(const hpdata_t *hpdata) {
return hpdata->h_in_psset_alloc_container;
}
static inline void
hpdata_in_psset_alloc_container_set(hpdata_t *hpdata, bool in_container) {
assert(in_container != hpdata->h_in_psset_alloc_container);
hpdata->h_in_psset_alloc_container = in_container;
}
static inline hpdata_purge_level_t
hpdata_purge_level_get(const hpdata_t *hpdata) {
return (hpdata_purge_level_t)hpdata->h_purge_level;
}
static inline void
hpdata_purge_level_set(hpdata_t *hpdata, hpdata_purge_level_t level) {
assert(level == hpdata_purge_level_never || !hpdata->h_mid_purge);
hpdata->h_purge_level = (uint8_t)level;
}
static inline hpdata_purge_level_t
hpdata_purge_container_level_get(const hpdata_t *hpdata) {
return (hpdata_purge_level_t)hpdata->h_purge_container_level;
}
static inline void
hpdata_purge_container_level_set(hpdata_t *hpdata, hpdata_purge_level_t level) {
assert(level != hpdata->h_purge_container_level);
hpdata->h_purge_container_level = level;
}
static inline bool
hpdata_hugify_allowed_get(const hpdata_t *hpdata) {
return hpdata->h_hugify_allowed;
}
static inline void
hpdata_hugify_allowed_set(hpdata_t *hpdata, bool hugify_allowed) {
assert(hugify_allowed == false || !hpdata->h_mid_hugify);
hpdata->h_hugify_allowed = hugify_allowed;
}
static inline bool
hpdata_in_psset_hugify_container_get(const hpdata_t *hpdata) {
return hpdata->h_in_psset_hugify_container;
}
static inline void
hpdata_in_psset_hugify_container_set(hpdata_t *hpdata, bool in_container) {
assert(in_container != hpdata->h_in_psset_hugify_container);
hpdata->h_in_psset_hugify_container = in_container;
}
static inline bool
hpdata_mid_purge_get(const hpdata_t *hpdata) {
return hpdata->h_mid_purge;
}
static inline void
hpdata_mid_purge_set(hpdata_t *hpdata, bool mid_purge) {
assert(mid_purge != hpdata->h_mid_purge);
hpdata->h_mid_purge = mid_purge;
}
static inline bool
hpdata_mid_hugify_get(const hpdata_t *hpdata) {
return hpdata->h_mid_hugify;
}
static inline void
hpdata_mid_hugify_set(hpdata_t *hpdata, bool mid_hugify) {
assert(mid_hugify != hpdata->h_mid_hugify);
hpdata->h_mid_hugify = mid_hugify;
}
static inline bool
hpdata_changing_state_get(const hpdata_t *hpdata) {
return hpdata->h_mid_purge || hpdata->h_mid_hugify;
}
static inline bool
hpdata_updating_get(const hpdata_t *hpdata) {
return hpdata->h_updating;
}
static inline void
hpdata_updating_set(hpdata_t *hpdata, bool updating) {
assert(updating != hpdata->h_updating);
hpdata->h_updating = updating;
}
static inline bool
hpdata_in_psset_get(const hpdata_t *hpdata) {
return hpdata->h_in_psset;
}
static inline void
hpdata_in_psset_set(hpdata_t *hpdata, bool in_psset) {
assert(in_psset != hpdata->h_in_psset);
hpdata->h_in_psset = in_psset;
}
static inline size_t
hpdata_longest_free_range_get(const hpdata_t *hpdata) {
return hpdata->h_longest_free_range;
}
static inline void
hpdata_longest_free_range_set(hpdata_t *hpdata, size_t longest_free_range) {
assert(longest_free_range <= HUGEPAGE_PAGES);
hpdata->h_longest_free_range = longest_free_range;
}
static inline size_t
hpdata_nactive_get(hpdata_t *hpdata) {
return hpdata->h_nactive;
}
static inline size_t
hpdata_ntouched_get(hpdata_t *hpdata) {
return hpdata->h_ntouched;
}
static inline size_t
hpdata_ndirty_get(hpdata_t *hpdata) {
return hpdata->h_ntouched - hpdata->h_nactive;
}
static inline size_t
hpdata_nretained_get(hpdata_t *hpdata) {
return hpdata->h_nactive - hpdata->h_ntouched;
}
static inline void
hpdata_assert_empty(hpdata_t *hpdata) {
assert(fb_empty(hpdata->active_pages, HUGEPAGE_PAGES));
assert(hpdata->h_nactive == 0);
}
/*
* Only used in tests, and in hpdata_assert_consistent, below. Verifies some
* consistency properties of the hpdata (e.g. that cached counts of page stats
* match computed ones).
*/
static inline bool
hpdata_consistent(hpdata_t *hpdata) {
if(fb_urange_longest(hpdata->active_pages, HUGEPAGE_PAGES)
!= hpdata_longest_free_range_get(hpdata)) {
return false;
}
if (fb_scount(hpdata->active_pages, HUGEPAGE_PAGES, 0, HUGEPAGE_PAGES)
!= hpdata->h_nactive) {
return false;
}
if (fb_scount(hpdata->touched_pages, HUGEPAGE_PAGES, 0, HUGEPAGE_PAGES)
!= hpdata->h_ntouched) {
return false;
}
if (hpdata->h_ntouched < hpdata->h_nactive) {
return false;
}
if (hpdata->h_huge && hpdata->h_ntouched != HUGEPAGE_PAGES) {
return false;
}
if (hpdata_changing_state_get(hpdata)
&& ((hpdata->h_purge_level != hpdata_purge_level_never)
|| hpdata->h_hugify_allowed)) {
return false;
}
if (hpdata_purge_level_get(hpdata)
!= hpdata_purge_container_level_get(hpdata)) {
return false;
}
if (hpdata_hugify_allowed_get(hpdata)
!= hpdata_in_psset_hugify_container_get(hpdata)) {
return false;
}
return true;
}
static inline void
hpdata_assert_consistent(hpdata_t *hpdata) {
assert(hpdata_consistent(hpdata));
}
static inline bool
hpdata_empty(hpdata_t *hpdata) {
return hpdata->h_nactive == 0;
}
static inline bool
hpdata_full(hpdata_t *hpdata) {
return hpdata->h_nactive == HUGEPAGE_PAGES;
}
void hpdata_init(hpdata_t *hpdata, void *addr, uint64_t age);
/*
* Given an hpdata which can serve an allocation request, pick and reserve an
* offset within that allocation.
*/
void *hpdata_reserve_alloc(hpdata_t *hpdata, size_t sz);
void hpdata_unreserve(hpdata_t *hpdata, void *begin, size_t sz);
/*
* The hpdata_purge_prepare_t allows grabbing the metadata required to purge
* subranges of a hugepage while holding a lock, drop the lock during the actual
* purging of them, and reacquire it to update the metadata again.
*/
typedef struct hpdata_purge_state_s hpdata_purge_state_t;
struct hpdata_purge_state_s {
size_t npurged;
fb_group_t to_purge[FB_NGROUPS(HUGEPAGE_PAGES)];
size_t next_purge_search_begin;
};
/*
* Initializes purge state. The access to hpdata must be externally
* synchronized with other hpdata_* calls.
*
* You can tell whether or not a thread is purging or hugifying a given hpdata
* via hpdata_changing_state_get(hpdata). Racing hugification or purging
* operations aren't allowed.
*
* Once you begin purging, you have to follow through and call hpdata_purge_next
* until you're done, and then end. Allocating out of an hpdata undergoing
* purging is not allowed.
*
* Returns the number of pages that will be purged.
*/
size_t hpdata_purge_begin(hpdata_t *hpdata, hpdata_purge_state_t *purge_state);
/*
* If there are more extents to purge, sets *r_purge_addr and *r_purge_size to
* true, and returns true. Otherwise, returns false to indicate that we're
* done.
*
* This requires exclusive access to the purge state, but *not* to the hpdata.
* In particular, unreserve calls are allowed while purging (i.e. you can dalloc
* into one part of the hpdata while purging a different part).
*/
bool hpdata_purge_next(hpdata_t *hpdata, hpdata_purge_state_t *purge_state,
void **r_purge_addr, size_t *r_purge_size);
/*
* Updates the hpdata metadata after all purging is done. Needs external
* synchronization.
*/
void hpdata_purge_end(hpdata_t *hpdata, hpdata_purge_state_t *purge_state);
void hpdata_hugify(hpdata_t *hpdata);
void hpdata_dehugify(hpdata_t *hpdata);
#endif /* JEMALLOC_INTERNAL_HPDATA_H */