server-skynet-source-3rd-je.../include/jemalloc/internal/flat_bitmap.h
David Goldblatt ed99d300b9 Flat bitmap: Add longest-range computation.
This will come in handy in the (upcoming) page-slab set assertions.
2020-09-18 12:39:25 -07:00

313 lines
9.1 KiB
C

#ifndef JEMALLOC_INTERNAL_FB_H
#define JEMALLOC_INTERNAL_FB_H
/*
* The flat bitmap module. This has a larger API relative to the bitmap module
* (supporting things like backwards searches, and searching for both set and
* unset bits), at the cost of slower operations for very large bitmaps.
*
* Initialized flat bitmaps start at all-zeros (all bits unset).
*/
typedef unsigned long fb_group_t;
#define FB_GROUP_BITS (ZU(1) << (LG_SIZEOF_LONG + 3))
#define FB_NGROUPS(nbits) ((nbits) / FB_GROUP_BITS \
+ ((nbits) % FB_GROUP_BITS == 0 ? 0 : 1))
static inline void
fb_init(fb_group_t *fb, size_t nbits) {
size_t ngroups = FB_NGROUPS(nbits);
memset(fb, 0, ngroups * sizeof(fb_group_t));
}
static inline bool
fb_empty(fb_group_t *fb, size_t nbits) {
size_t ngroups = FB_NGROUPS(nbits);
for (size_t i = 0; i < ngroups; i++) {
if (fb[i] != 0) {
return false;
}
}
return true;
}
static inline bool
fb_full(fb_group_t *fb, size_t nbits) {
size_t ngroups = FB_NGROUPS(nbits);
size_t trailing_bits = nbits % FB_GROUP_BITS;
size_t limit = (trailing_bits == 0 ? ngroups : ngroups - 1);
for (size_t i = 0; i < limit; i++) {
if (fb[i] != ~(fb_group_t)0) {
return false;
}
}
if (trailing_bits == 0) {
return true;
}
return fb[ngroups - 1] == ((fb_group_t)1 << trailing_bits) - 1;
}
static inline bool
fb_get(fb_group_t *fb, size_t nbits, size_t bit) {
assert(bit < nbits);
size_t group_ind = bit / FB_GROUP_BITS;
size_t bit_ind = bit % FB_GROUP_BITS;
return (bool)(fb[group_ind] & ((fb_group_t)1 << bit_ind));
}
static inline void
fb_set(fb_group_t *fb, size_t nbits, size_t bit) {
assert(bit < nbits);
size_t group_ind = bit / FB_GROUP_BITS;
size_t bit_ind = bit % FB_GROUP_BITS;
fb[group_ind] |= ((fb_group_t)1 << bit_ind);
}
static inline void
fb_unset(fb_group_t *fb, size_t nbits, size_t bit) {
assert(bit < nbits);
size_t group_ind = bit / FB_GROUP_BITS;
size_t bit_ind = bit % FB_GROUP_BITS;
fb[group_ind] &= ~((fb_group_t)1 << bit_ind);
}
JEMALLOC_ALWAYS_INLINE void
fb_assign_group_impl(fb_group_t *fb, size_t start, size_t cnt, bool val) {
assert(cnt > 0);
assert(start + cnt - 1 < FB_GROUP_BITS);
fb_group_t bits = ((~(fb_group_t)0) >> (FB_GROUP_BITS - cnt)) << start;
if (val) {
*fb |= bits;
} else {
*fb &= ~bits;
}
}
JEMALLOC_ALWAYS_INLINE void
fb_assign_impl(fb_group_t *fb, size_t nbits, size_t start, size_t cnt,
bool val) {
assert(start + cnt - 1 < nbits);
size_t group_ind = start / FB_GROUP_BITS;
size_t start_bit_ind = start % FB_GROUP_BITS;
/*
* The first group is special; it's the only one we don't start writing
* to from bit 0.
*/
size_t first_group_cnt =
(start_bit_ind + cnt > FB_GROUP_BITS
? FB_GROUP_BITS - start_bit_ind
: cnt);
/*
* We can basically split affected words into:
* - The first group, where we touch only the high bits
* - The last group, where we touch only the low bits
* - The middle, where we set all the bits to the same thing.
* We treat each case individually. The last two could be merged, but
* this can lead to bad codegen for those middle words.
*/
/* First group */
fb_assign_group_impl(&fb[group_ind], start_bit_ind, first_group_cnt,
val);
cnt -= first_group_cnt;
group_ind++;
/* Middle groups */
while (cnt > FB_GROUP_BITS) {
fb_assign_group_impl(&fb[group_ind], 0, FB_GROUP_BITS, val);
cnt -= FB_GROUP_BITS;
group_ind++;
}
/* Last group */
if (cnt != 0) {
fb_assign_group_impl(&fb[group_ind], 0, cnt, val);
}
}
/* Sets the cnt bits starting at position start. Must not have a 0 count. */
static inline void
fb_set_range(fb_group_t *fb, size_t nbits, size_t start, size_t cnt) {
fb_assign_impl(fb, nbits, start, cnt, true);
}
/* Unsets the cnt bits starting at position start. Must not have a 0 count. */
static inline void
fb_unset_range(fb_group_t *fb, size_t nbits, size_t start, size_t cnt) {
fb_assign_impl(fb, nbits, start, cnt, false);
}
/*
* An implementation detail; find the first bit at position >= min_bit with the
* value val.
*
* Returns the number of bits in the bitmap if no such bit exists.
*/
JEMALLOC_ALWAYS_INLINE ssize_t
fb_find_impl(fb_group_t *fb, size_t nbits, size_t start, bool val,
bool forward) {
assert(start < nbits);
size_t ngroups = FB_NGROUPS(nbits);
ssize_t group_ind = start / FB_GROUP_BITS;
size_t bit_ind = start % FB_GROUP_BITS;
fb_group_t maybe_invert = (val ? 0 : (fb_group_t)-1);
fb_group_t group = fb[group_ind];
group ^= maybe_invert;
if (forward) {
/* Only keep ones in bits bit_ind and above. */
group &= ~((1LU << bit_ind) - 1);
} else {
/*
* Only keep ones in bits bit_ind and below. You might more
* naturally express this as (1 << (bit_ind + 1)) - 1, but
* that shifts by an invalid amount if bit_ind is one less than
* FB_GROUP_BITS.
*/
group &= ((2LU << bit_ind) - 1);
}
ssize_t group_ind_bound = forward ? (ssize_t)ngroups : -1;
while (group == 0) {
group_ind += forward ? 1 : -1;
if (group_ind == group_ind_bound) {
return forward ? (ssize_t)nbits : (ssize_t)-1;
}
group = fb[group_ind];
group ^= maybe_invert;
}
assert(group != 0);
size_t bit = forward ? ffs_lu(group) : fls_lu(group);
size_t pos = group_ind * FB_GROUP_BITS + bit;
/*
* The high bits of a partially filled last group are zeros, so if we're
* looking for zeros we don't want to report an invalid result.
*/
if (forward && !val && pos > nbits) {
return nbits;
}
return pos;
}
/*
* Find the first set bit in the bitmap with an index >= min_bit. Returns the
* number of bits in the bitmap if no such bit exists.
*/
static inline size_t
fb_ffu(fb_group_t *fb, size_t nbits, size_t min_bit) {
return (size_t)fb_find_impl(fb, nbits, min_bit, /* val */ false,
/* forward */ true);
}
/* The same, but looks for an unset bit. */
static inline size_t
fb_ffs(fb_group_t *fb, size_t nbits, size_t min_bit) {
return (size_t)fb_find_impl(fb, nbits, min_bit, /* val */ true,
/* forward */ true);
}
/*
* Find the last set bit in the bitmap with an index <= max_bit. Returns -1 if
* no such bit exists.
*/
static inline ssize_t
fb_flu(fb_group_t *fb, size_t nbits, size_t max_bit) {
return fb_find_impl(fb, nbits, max_bit, /* val */ false,
/* forward */ false);
}
static inline ssize_t
fb_fls(fb_group_t *fb, size_t nbits, size_t max_bit) {
return fb_find_impl(fb, nbits, max_bit, /* val */ true,
/* forward */ false);
}
/* Returns whether or not we found a range. */
JEMALLOC_ALWAYS_INLINE bool
fb_iter_range_impl(fb_group_t *fb, size_t nbits, size_t start, size_t *r_begin,
size_t *r_len, bool val, bool forward) {
assert(start < nbits);
ssize_t next_range_begin = fb_find_impl(fb, nbits, start, val, forward);
if ((forward && next_range_begin == (ssize_t)nbits)
|| (!forward && next_range_begin == (ssize_t)-1)) {
return false;
}
/* Half open range; the set bits are [begin, end). */
ssize_t next_range_end = fb_find_impl(fb, nbits, next_range_begin, !val,
forward);
if (forward) {
*r_begin = next_range_begin;
*r_len = next_range_end - next_range_begin;
} else {
*r_begin = next_range_end + 1;
*r_len = next_range_begin - next_range_end;
}
return true;
}
/*
* Used to iterate through ranges of set bits.
*
* Tries to find the next contiguous sequence of set bits with a first index >=
* start. If one exists, puts the earliest bit of the range in *r_begin, its
* length in *r_len, and returns true. Otherwise, returns false (without
* touching *r_begin or *r_end).
*/
static inline bool
fb_srange_iter(fb_group_t *fb, size_t nbits, size_t start, size_t *r_begin,
size_t *r_len) {
return fb_iter_range_impl(fb, nbits, start, r_begin, r_len,
/* val */ true, /* forward */ true);
}
/*
* The same as fb_srange_iter, but searches backwards from start rather than
* forwards. (The position returned is still the earliest bit in the range).
*/
static inline bool
fb_srange_riter(fb_group_t *fb, size_t nbits, size_t start, size_t *r_begin,
size_t *r_len) {
return fb_iter_range_impl(fb, nbits, start, r_begin, r_len,
/* val */ true, /* forward */ false);
}
/* Similar to fb_srange_iter, but searches for unset bits. */
static inline bool
fb_urange_iter(fb_group_t *fb, size_t nbits, size_t start, size_t *r_begin,
size_t *r_len) {
return fb_iter_range_impl(fb, nbits, start, r_begin, r_len,
/* val */ false, /* forward */ true);
}
/* Similar to fb_srange_riter, but searches for unset bits. */
static inline bool
fb_urange_riter(fb_group_t *fb, size_t nbits, size_t start, size_t *r_begin,
size_t *r_len) {
return fb_iter_range_impl(fb, nbits, start, r_begin, r_len,
/* val */ false, /* forward */ false);
}
JEMALLOC_ALWAYS_INLINE size_t
fb_range_longest_impl(fb_group_t *fb, size_t nbits, bool val) {
size_t begin = 0;
size_t longest_len = 0;
size_t len = 0;
while (begin < nbits && fb_iter_range_impl(fb, nbits, begin, &begin,
&len, val, /* forward */ true)) {
if (len > longest_len) {
longest_len = len;
}
begin += len;
}
return longest_len;
}
static inline size_t
fb_srange_longest(fb_group_t *fb, size_t nbits) {
return fb_range_longest_impl(fb, nbits, /* val */ true);
}
static inline size_t
fb_urange_longest(fb_group_t *fb, size_t nbits) {
return fb_range_longest_impl(fb, nbits, /* val */ false);
}
#endif /* JEMALLOC_INTERNAL_FB_H */