server-skynet-source-3rd-je.../src/hpdata.c
Kevin Svetlitski 3e82f357bb Fix all optimization-inhibiting integer-to-pointer casts
Following from PR #2481, we replace all integer-to-pointer casts [which
hide pointer provenance information (and thus inhibit
optimizations)](https://clang.llvm.org/extra/clang-tidy/checks/performance/no-int-to-ptr.html)
with equivalent operations that preserve this information. I have
enabled the corresponding clang-tidy check in our static analysis CI so
that we do not get bitten by this again in the future.
2023-07-24 14:40:42 -07:00

326 lines
9.9 KiB
C

#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/hpdata.h"
static int
hpdata_age_comp(const hpdata_t *a, const hpdata_t *b) {
uint64_t a_age = hpdata_age_get(a);
uint64_t b_age = hpdata_age_get(b);
/*
* hpdata ages are operation counts in the psset; no two should be the
* same.
*/
assert(a_age != b_age);
return (a_age > b_age) - (a_age < b_age);
}
ph_gen(, hpdata_age_heap, hpdata_t, age_link, hpdata_age_comp)
void
hpdata_init(hpdata_t *hpdata, void *addr, uint64_t age) {
hpdata_addr_set(hpdata, addr);
hpdata_age_set(hpdata, age);
hpdata->h_huge = false;
hpdata->h_alloc_allowed = true;
hpdata->h_in_psset_alloc_container = false;
hpdata->h_purge_allowed = false;
hpdata->h_hugify_allowed = false;
hpdata->h_in_psset_hugify_container = false;
hpdata->h_mid_purge = false;
hpdata->h_mid_hugify = false;
hpdata->h_updating = false;
hpdata->h_in_psset = false;
hpdata_longest_free_range_set(hpdata, HUGEPAGE_PAGES);
hpdata->h_nactive = 0;
fb_init(hpdata->active_pages, HUGEPAGE_PAGES);
hpdata->h_ntouched = 0;
fb_init(hpdata->touched_pages, HUGEPAGE_PAGES);
hpdata_assert_consistent(hpdata);
}
void *
hpdata_reserve_alloc(hpdata_t *hpdata, size_t sz) {
hpdata_assert_consistent(hpdata);
/*
* This is a metadata change; the hpdata should therefore either not be
* in the psset, or should have explicitly marked itself as being
* mid-update.
*/
assert(!hpdata->h_in_psset || hpdata->h_updating);
assert(hpdata->h_alloc_allowed);
assert((sz & PAGE_MASK) == 0);
size_t npages = sz >> LG_PAGE;
assert(npages <= hpdata_longest_free_range_get(hpdata));
size_t result;
size_t start = 0;
/*
* These are dead stores, but the compiler will issue warnings on them
* since it can't tell statically that found is always true below.
*/
size_t begin = 0;
size_t len = 0;
size_t largest_unchosen_range = 0;
while (true) {
bool found = fb_urange_iter(hpdata->active_pages,
HUGEPAGE_PAGES, start, &begin, &len);
/*
* A precondition to this function is that hpdata must be able
* to serve the allocation.
*/
assert(found);
assert(len <= hpdata_longest_free_range_get(hpdata));
if (len >= npages) {
/*
* We use first-fit within the page slabs; this gives
* bounded worst-case fragmentation within a slab. It's
* not necessarily right; we could experiment with
* various other options.
*/
break;
}
if (len > largest_unchosen_range) {
largest_unchosen_range = len;
}
start = begin + len;
}
/* We found a range; remember it. */
result = begin;
fb_set_range(hpdata->active_pages, HUGEPAGE_PAGES, begin, npages);
hpdata->h_nactive += npages;
/*
* We might be about to dirty some memory for the first time; update our
* count if so.
*/
size_t new_dirty = fb_ucount(hpdata->touched_pages, HUGEPAGE_PAGES,
result, npages);
fb_set_range(hpdata->touched_pages, HUGEPAGE_PAGES, result, npages);
hpdata->h_ntouched += new_dirty;
/*
* If we allocated out of a range that was the longest in the hpdata, it
* might be the only one of that size and we'll have to adjust the
* metadata.
*/
if (len == hpdata_longest_free_range_get(hpdata)) {
start = begin + npages;
while (start < HUGEPAGE_PAGES) {
bool found = fb_urange_iter(hpdata->active_pages,
HUGEPAGE_PAGES, start, &begin, &len);
if (!found) {
break;
}
assert(len <= hpdata_longest_free_range_get(hpdata));
if (len == hpdata_longest_free_range_get(hpdata)) {
largest_unchosen_range = len;
break;
}
if (len > largest_unchosen_range) {
largest_unchosen_range = len;
}
start = begin + len;
}
hpdata_longest_free_range_set(hpdata, largest_unchosen_range);
}
hpdata_assert_consistent(hpdata);
return (void *)(
(byte_t *)hpdata_addr_get(hpdata) + (result << LG_PAGE));
}
void
hpdata_unreserve(hpdata_t *hpdata, void *addr, size_t sz) {
hpdata_assert_consistent(hpdata);
/* See the comment in reserve. */
assert(!hpdata->h_in_psset || hpdata->h_updating);
assert(((uintptr_t)addr & PAGE_MASK) == 0);
assert((sz & PAGE_MASK) == 0);
size_t begin = ((uintptr_t)addr - (uintptr_t)hpdata_addr_get(hpdata))
>> LG_PAGE;
assert(begin < HUGEPAGE_PAGES);
size_t npages = sz >> LG_PAGE;
size_t old_longest_range = hpdata_longest_free_range_get(hpdata);
fb_unset_range(hpdata->active_pages, HUGEPAGE_PAGES, begin, npages);
/* We might have just created a new, larger range. */
size_t new_begin = (fb_fls(hpdata->active_pages, HUGEPAGE_PAGES,
begin) + 1);
size_t new_end = fb_ffs(hpdata->active_pages, HUGEPAGE_PAGES,
begin + npages - 1);
size_t new_range_len = new_end - new_begin;
if (new_range_len > old_longest_range) {
hpdata_longest_free_range_set(hpdata, new_range_len);
}
hpdata->h_nactive -= npages;
hpdata_assert_consistent(hpdata);
}
size_t
hpdata_purge_begin(hpdata_t *hpdata, hpdata_purge_state_t *purge_state) {
hpdata_assert_consistent(hpdata);
/*
* See the comment below; we might purge any inactive extent, so it's
* unsafe for any other thread to turn any inactive extent active while
* we're operating on it.
*/
assert(!hpdata_alloc_allowed_get(hpdata));
purge_state->npurged = 0;
purge_state->next_purge_search_begin = 0;
/*
* Initialize to_purge.
*
* It's possible to end up in situations where two dirty extents are
* separated by a retained extent:
* - 1 page allocated.
* - 1 page allocated.
* - 1 pages allocated.
*
* If the middle page is freed and purged, and then the first and third
* pages are freed, and then another purge pass happens, the hpdata
* looks like this:
* - 1 page dirty.
* - 1 page retained.
* - 1 page dirty.
*
* But it's safe to do a single 3-page purge.
*
* We do this by first computing the dirty pages, and then filling in
* any gaps by extending each range in the dirty bitmap to extend until
* the next active page. This purges more pages, but the expensive part
* of purging is the TLB shootdowns, rather than the kernel state
* tracking; doing a little bit more of the latter is fine if it saves
* us from doing some of the former.
*/
/*
* The dirty pages are those that are touched but not active. Note that
* in a normal-ish case, HUGEPAGE_PAGES is something like 512 and the
* fb_group_t is 64 bits, so this is 64 bytes, spread across 8
* fb_group_ts.
*/
fb_group_t dirty_pages[FB_NGROUPS(HUGEPAGE_PAGES)];
fb_init(dirty_pages, HUGEPAGE_PAGES);
fb_bit_not(dirty_pages, hpdata->active_pages, HUGEPAGE_PAGES);
fb_bit_and(dirty_pages, dirty_pages, hpdata->touched_pages,
HUGEPAGE_PAGES);
fb_init(purge_state->to_purge, HUGEPAGE_PAGES);
size_t next_bit = 0;
while (next_bit < HUGEPAGE_PAGES) {
size_t next_dirty = fb_ffs(dirty_pages, HUGEPAGE_PAGES,
next_bit);
/* Recall that fb_ffs returns nbits if no set bit is found. */
if (next_dirty == HUGEPAGE_PAGES) {
break;
}
size_t next_active = fb_ffs(hpdata->active_pages,
HUGEPAGE_PAGES, next_dirty);
/*
* Don't purge past the end of the dirty extent, into retained
* pages. This helps the kernel a tiny bit, but honestly it's
* mostly helpful for testing (where we tend to write test cases
* that think in terms of the dirty ranges).
*/
ssize_t last_dirty = fb_fls(dirty_pages, HUGEPAGE_PAGES,
next_active - 1);
assert(last_dirty >= 0);
assert((size_t)last_dirty >= next_dirty);
assert((size_t)last_dirty - next_dirty + 1 <= HUGEPAGE_PAGES);
fb_set_range(purge_state->to_purge, HUGEPAGE_PAGES, next_dirty,
last_dirty - next_dirty + 1);
next_bit = next_active + 1;
}
/* We should purge, at least, everything dirty. */
size_t ndirty = hpdata->h_ntouched - hpdata->h_nactive;
purge_state->ndirty_to_purge = ndirty;
assert(ndirty <= fb_scount(
purge_state->to_purge, HUGEPAGE_PAGES, 0, HUGEPAGE_PAGES));
assert(ndirty == fb_scount(dirty_pages, HUGEPAGE_PAGES, 0,
HUGEPAGE_PAGES));
hpdata_assert_consistent(hpdata);
return ndirty;
}
bool
hpdata_purge_next(hpdata_t *hpdata, hpdata_purge_state_t *purge_state,
void **r_purge_addr, size_t *r_purge_size) {
/*
* Note that we don't have a consistency check here; we're accessing
* hpdata without synchronization, and therefore have no right to expect
* a consistent state.
*/
assert(!hpdata_alloc_allowed_get(hpdata));
if (purge_state->next_purge_search_begin == HUGEPAGE_PAGES) {
return false;
}
size_t purge_begin;
size_t purge_len;
bool found_range = fb_srange_iter(purge_state->to_purge, HUGEPAGE_PAGES,
purge_state->next_purge_search_begin, &purge_begin, &purge_len);
if (!found_range) {
return false;
}
*r_purge_addr = (void *)(
(byte_t *)hpdata_addr_get(hpdata) + purge_begin * PAGE);
*r_purge_size = purge_len * PAGE;
purge_state->next_purge_search_begin = purge_begin + purge_len;
purge_state->npurged += purge_len;
assert(purge_state->npurged <= HUGEPAGE_PAGES);
return true;
}
void
hpdata_purge_end(hpdata_t *hpdata, hpdata_purge_state_t *purge_state) {
assert(!hpdata_alloc_allowed_get(hpdata));
hpdata_assert_consistent(hpdata);
/* See the comment in reserve. */
assert(!hpdata->h_in_psset || hpdata->h_updating);
assert(purge_state->npurged == fb_scount(purge_state->to_purge,
HUGEPAGE_PAGES, 0, HUGEPAGE_PAGES));
assert(purge_state->npurged >= purge_state->ndirty_to_purge);
fb_bit_not(purge_state->to_purge, purge_state->to_purge,
HUGEPAGE_PAGES);
fb_bit_and(hpdata->touched_pages, hpdata->touched_pages,
purge_state->to_purge, HUGEPAGE_PAGES);
assert(hpdata->h_ntouched >= purge_state->ndirty_to_purge);
hpdata->h_ntouched -= purge_state->ndirty_to_purge;
hpdata_assert_consistent(hpdata);
}
void
hpdata_hugify(hpdata_t *hpdata) {
hpdata_assert_consistent(hpdata);
hpdata->h_huge = true;
fb_set_range(hpdata->touched_pages, HUGEPAGE_PAGES, 0, HUGEPAGE_PAGES);
hpdata->h_ntouched = HUGEPAGE_PAGES;
hpdata_assert_consistent(hpdata);
}
void
hpdata_dehugify(hpdata_t *hpdata) {
hpdata_assert_consistent(hpdata);
hpdata->h_huge = false;
hpdata_assert_consistent(hpdata);
}