8d0e04d42f
Recent huge allocation refactoring associates huge allocations with arenas, but it remains necessary to quickly look up huge allocation metadata during reallocation/deallocation. A global radix tree remains a good solution to this problem, but locking would have become the primary bottleneck after (upcoming) migration of chunk management from global to per arena data structures. This lock-free implementation uses double-checked reads to traverse the tree, so that in the steady state, each read or write requires only a single atomic operation. This implementation also assures that no more than two tree levels actually exist, through a combination of careful virtual memory allocation which makes large sparse nodes cheap, and skipping the root node on x64 (possible because the top 16 bits are all 0 in practice).
146 lines
3.4 KiB
C
146 lines
3.4 KiB
C
#include "test/jemalloc_test.h"
|
|
|
|
static rtree_node_elm_t *
|
|
node_alloc(size_t nelms)
|
|
{
|
|
|
|
return (calloc(nelms, sizeof(rtree_node_elm_t)));
|
|
}
|
|
|
|
static void
|
|
node_dalloc(rtree_node_elm_t *node)
|
|
{
|
|
|
|
free(node);
|
|
}
|
|
|
|
TEST_BEGIN(test_rtree_get_empty)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 1; i <= (sizeof(uintptr_t) << 3); i++) {
|
|
rtree_t rtree;
|
|
assert_false(rtree_new(&rtree, i, node_alloc, node_dalloc),
|
|
"Unexpected rtree_new() failure");
|
|
assert_ptr_eq(rtree_get(&rtree, 0), NULL,
|
|
"rtree_get() should return NULL for empty tree");
|
|
rtree_delete(&rtree);
|
|
}
|
|
}
|
|
TEST_END
|
|
|
|
TEST_BEGIN(test_rtree_extrema)
|
|
{
|
|
unsigned i;
|
|
extent_node_t node_a, node_b;
|
|
|
|
for (i = 1; i <= (sizeof(uintptr_t) << 3); i++) {
|
|
rtree_t rtree;
|
|
assert_false(rtree_new(&rtree, i, node_alloc, node_dalloc),
|
|
"Unexpected rtree_new() failure");
|
|
|
|
rtree_set(&rtree, 0, &node_a);
|
|
assert_ptr_eq(rtree_get(&rtree, 0), &node_a,
|
|
"rtree_get() should return previously set value");
|
|
|
|
rtree_set(&rtree, ~((uintptr_t)0), &node_b);
|
|
assert_ptr_eq(rtree_get(&rtree, ~((uintptr_t)0)), &node_b,
|
|
"rtree_get() should return previously set value");
|
|
|
|
rtree_delete(&rtree);
|
|
}
|
|
}
|
|
TEST_END
|
|
|
|
TEST_BEGIN(test_rtree_bits)
|
|
{
|
|
unsigned i, j, k;
|
|
|
|
for (i = 1; i < (sizeof(uintptr_t) << 3); i++) {
|
|
uintptr_t keys[] = {0, 1,
|
|
(((uintptr_t)1) << (sizeof(uintptr_t)*8-i)) - 1};
|
|
extent_node_t node;
|
|
rtree_t rtree;
|
|
|
|
assert_false(rtree_new(&rtree, i, node_alloc, node_dalloc),
|
|
"Unexpected rtree_new() failure");
|
|
|
|
for (j = 0; j < sizeof(keys)/sizeof(uintptr_t); j++) {
|
|
rtree_set(&rtree, keys[j], &node);
|
|
for (k = 0; k < sizeof(keys)/sizeof(uintptr_t); k++) {
|
|
assert_ptr_eq(rtree_get(&rtree, keys[k]), &node,
|
|
"rtree_get() should return previously set "
|
|
"value and ignore insignificant key bits; "
|
|
"i=%u, j=%u, k=%u, set key=%#"PRIxPTR", "
|
|
"get key=%#"PRIxPTR, i, j, k, keys[j],
|
|
keys[k]);
|
|
}
|
|
assert_ptr_eq(rtree_get(&rtree,
|
|
(((uintptr_t)1) << (sizeof(uintptr_t)*8-i))), NULL,
|
|
"Only leftmost rtree leaf should be set; "
|
|
"i=%u, j=%u", i, j);
|
|
rtree_set(&rtree, keys[j], NULL);
|
|
}
|
|
|
|
rtree_delete(&rtree);
|
|
}
|
|
}
|
|
TEST_END
|
|
|
|
TEST_BEGIN(test_rtree_random)
|
|
{
|
|
unsigned i;
|
|
sfmt_t *sfmt;
|
|
#define NSET 16
|
|
#define SEED 42
|
|
|
|
sfmt = init_gen_rand(SEED);
|
|
for (i = 1; i <= (sizeof(uintptr_t) << 3); i++) {
|
|
uintptr_t keys[NSET];
|
|
extent_node_t node;
|
|
unsigned j;
|
|
rtree_t rtree;
|
|
|
|
assert_false(rtree_new(&rtree, i, node_alloc, node_dalloc),
|
|
"Unexpected rtree_new() failure");
|
|
|
|
for (j = 0; j < NSET; j++) {
|
|
keys[j] = (uintptr_t)gen_rand64(sfmt);
|
|
rtree_set(&rtree, keys[j], &node);
|
|
assert_ptr_eq(rtree_get(&rtree, keys[j]), &node,
|
|
"rtree_get() should return previously set value");
|
|
}
|
|
for (j = 0; j < NSET; j++) {
|
|
assert_ptr_eq(rtree_get(&rtree, keys[j]), &node,
|
|
"rtree_get() should return previously set value");
|
|
}
|
|
|
|
for (j = 0; j < NSET; j++) {
|
|
rtree_set(&rtree, keys[j], NULL);
|
|
assert_ptr_eq(rtree_get(&rtree, keys[j]), NULL,
|
|
"rtree_get() should return previously set value");
|
|
}
|
|
for (j = 0; j < NSET; j++) {
|
|
assert_ptr_eq(rtree_get(&rtree, keys[j]), NULL,
|
|
"rtree_get() should return previously set value");
|
|
}
|
|
|
|
rtree_delete(&rtree);
|
|
}
|
|
fini_gen_rand(sfmt);
|
|
#undef NSET
|
|
#undef SEED
|
|
}
|
|
TEST_END
|
|
|
|
int
|
|
main(void)
|
|
{
|
|
|
|
return (test(
|
|
test_rtree_get_empty,
|
|
test_rtree_extrema,
|
|
test_rtree_bits,
|
|
test_rtree_random));
|
|
}
|