server-skynet-source-3rd-je.../src/jemalloc.c
Qi Wang 4d56aaeca5 Optimize away the tsd_fast() check on free fastpath.
To ensure that the free fastpath can tolerate uninitialized tsd, improved the
static initializer for rtree_ctx in tsd.
2021-10-28 10:05:59 -07:00

4309 lines
115 KiB
C

#define JEMALLOC_C_
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/atomic.h"
#include "jemalloc/internal/buf_writer.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/emap.h"
#include "jemalloc/internal/extent_dss.h"
#include "jemalloc/internal/extent_mmap.h"
#include "jemalloc/internal/fxp.h"
#include "jemalloc/internal/guard.h"
#include "jemalloc/internal/hook.h"
#include "jemalloc/internal/jemalloc_internal_types.h"
#include "jemalloc/internal/log.h"
#include "jemalloc/internal/malloc_io.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/nstime.h"
#include "jemalloc/internal/rtree.h"
#include "jemalloc/internal/safety_check.h"
#include "jemalloc/internal/sc.h"
#include "jemalloc/internal/spin.h"
#include "jemalloc/internal/sz.h"
#include "jemalloc/internal/ticker.h"
#include "jemalloc/internal/thread_event.h"
#include "jemalloc/internal/util.h"
/******************************************************************************/
/* Data. */
/* Runtime configuration options. */
const char *je_malloc_conf
#ifndef _WIN32
JEMALLOC_ATTR(weak)
#endif
;
/*
* The usual rule is that the closer to runtime you are, the higher priority
* your configuration settings are (so the jemalloc config options get lower
* priority than the per-binary setting, which gets lower priority than the /etc
* setting, which gets lower priority than the environment settings).
*
* But it's a fairly common use case in some testing environments for a user to
* be able to control the binary, but nothing else (e.g. a performancy canary
* uses the production OS and environment variables, but can run any binary in
* those circumstances). For these use cases, it's handy to have an in-binary
* mechanism for overriding environment variable settings, with the idea that if
* the results are positive they get promoted to the official settings, and
* moved from the binary to the environment variable.
*
* We don't actually want this to be widespread, so we'll give it a silly name
* and not mention it in headers or documentation.
*/
const char *je_malloc_conf_2_conf_harder
#ifndef _WIN32
JEMALLOC_ATTR(weak)
#endif
;
bool opt_abort =
#ifdef JEMALLOC_DEBUG
true
#else
false
#endif
;
bool opt_abort_conf =
#ifdef JEMALLOC_DEBUG
true
#else
false
#endif
;
/* Intentionally default off, even with debug builds. */
bool opt_confirm_conf = false;
const char *opt_junk =
#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
"true"
#else
"false"
#endif
;
bool opt_junk_alloc =
#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
true
#else
false
#endif
;
bool opt_junk_free =
#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
true
#else
false
#endif
;
bool opt_trust_madvise =
#ifdef JEMALLOC_PURGE_MADVISE_DONTNEED_ZEROS
false
#else
true
#endif
;
bool opt_cache_oblivious =
#ifdef JEMALLOC_CACHE_OBLIVIOUS
true
#else
false
#endif
;
zero_realloc_action_t opt_zero_realloc_action =
zero_realloc_action_strict;
atomic_zu_t zero_realloc_count = ATOMIC_INIT(0);
const char *zero_realloc_mode_names[] = {
"strict",
"free",
"abort",
};
/*
* These are the documented values for junk fill debugging facilities -- see the
* man page.
*/
static const uint8_t junk_alloc_byte = 0xa5;
static const uint8_t junk_free_byte = 0x5a;
static void default_junk_alloc(void *ptr, size_t usize) {
memset(ptr, junk_alloc_byte, usize);
}
static void default_junk_free(void *ptr, size_t usize) {
memset(ptr, junk_free_byte, usize);
}
void (*junk_alloc_callback)(void *ptr, size_t size) = &default_junk_alloc;
void (*junk_free_callback)(void *ptr, size_t size) = &default_junk_free;
bool opt_utrace = false;
bool opt_xmalloc = false;
bool opt_experimental_infallible_new = false;
bool opt_zero = false;
unsigned opt_narenas = 0;
fxp_t opt_narenas_ratio = FXP_INIT_INT(4);
unsigned ncpus;
/* Protects arenas initialization. */
malloc_mutex_t arenas_lock;
/* The global hpa, and whether it's on. */
bool opt_hpa = false;
hpa_shard_opts_t opt_hpa_opts = HPA_SHARD_OPTS_DEFAULT;
sec_opts_t opt_hpa_sec_opts = SEC_OPTS_DEFAULT;
/*
* Arenas that are used to service external requests. Not all elements of the
* arenas array are necessarily used; arenas are created lazily as needed.
*
* arenas[0..narenas_auto) are used for automatic multiplexing of threads and
* arenas. arenas[narenas_auto..narenas_total) are only used if the application
* takes some action to create them and allocate from them.
*
* Points to an arena_t.
*/
JEMALLOC_ALIGNED(CACHELINE)
atomic_p_t arenas[MALLOCX_ARENA_LIMIT];
static atomic_u_t narenas_total; /* Use narenas_total_*(). */
/* Below three are read-only after initialization. */
static arena_t *a0; /* arenas[0]. */
unsigned narenas_auto;
unsigned manual_arena_base;
malloc_init_t malloc_init_state = malloc_init_uninitialized;
/* False should be the common case. Set to true to trigger initialization. */
bool malloc_slow = true;
/* When malloc_slow is true, set the corresponding bits for sanity check. */
enum {
flag_opt_junk_alloc = (1U),
flag_opt_junk_free = (1U << 1),
flag_opt_zero = (1U << 2),
flag_opt_utrace = (1U << 3),
flag_opt_xmalloc = (1U << 4)
};
static uint8_t malloc_slow_flags;
#ifdef JEMALLOC_THREADED_INIT
/* Used to let the initializing thread recursively allocate. */
# define NO_INITIALIZER ((unsigned long)0)
# define INITIALIZER pthread_self()
# define IS_INITIALIZER (malloc_initializer == pthread_self())
static pthread_t malloc_initializer = NO_INITIALIZER;
#else
# define NO_INITIALIZER false
# define INITIALIZER true
# define IS_INITIALIZER malloc_initializer
static bool malloc_initializer = NO_INITIALIZER;
#endif
/* Used to avoid initialization races. */
#ifdef _WIN32
#if _WIN32_WINNT >= 0x0600
static malloc_mutex_t init_lock = SRWLOCK_INIT;
#else
static malloc_mutex_t init_lock;
static bool init_lock_initialized = false;
JEMALLOC_ATTR(constructor)
static void WINAPI
_init_init_lock(void) {
/*
* If another constructor in the same binary is using mallctl to e.g.
* set up extent hooks, it may end up running before this one, and
* malloc_init_hard will crash trying to lock the uninitialized lock. So
* we force an initialization of the lock in malloc_init_hard as well.
* We don't try to care about atomicity of the accessed to the
* init_lock_initialized boolean, since it really only matters early in
* the process creation, before any separate thread normally starts
* doing anything.
*/
if (!init_lock_initialized) {
malloc_mutex_init(&init_lock, "init", WITNESS_RANK_INIT,
malloc_mutex_rank_exclusive);
}
init_lock_initialized = true;
}
#ifdef _MSC_VER
# pragma section(".CRT$XCU", read)
JEMALLOC_SECTION(".CRT$XCU") JEMALLOC_ATTR(used)
static const void (WINAPI *init_init_lock)(void) = _init_init_lock;
#endif
#endif
#else
static malloc_mutex_t init_lock = MALLOC_MUTEX_INITIALIZER;
#endif
typedef struct {
void *p; /* Input pointer (as in realloc(p, s)). */
size_t s; /* Request size. */
void *r; /* Result pointer. */
} malloc_utrace_t;
#ifdef JEMALLOC_UTRACE
# define UTRACE(a, b, c) do { \
if (unlikely(opt_utrace)) { \
int utrace_serrno = errno; \
malloc_utrace_t ut; \
ut.p = (a); \
ut.s = (b); \
ut.r = (c); \
UTRACE_CALL(&ut, sizeof(ut)); \
errno = utrace_serrno; \
} \
} while (0)
#else
# define UTRACE(a, b, c)
#endif
/* Whether encountered any invalid config options. */
static bool had_conf_error = false;
/******************************************************************************/
/*
* Function prototypes for static functions that are referenced prior to
* definition.
*/
static bool malloc_init_hard_a0(void);
static bool malloc_init_hard(void);
/******************************************************************************/
/*
* Begin miscellaneous support functions.
*/
JEMALLOC_ALWAYS_INLINE bool
malloc_init_a0(void) {
if (unlikely(malloc_init_state == malloc_init_uninitialized)) {
return malloc_init_hard_a0();
}
return false;
}
JEMALLOC_ALWAYS_INLINE bool
malloc_init(void) {
if (unlikely(!malloc_initialized()) && malloc_init_hard()) {
return true;
}
return false;
}
/*
* The a0*() functions are used instead of i{d,}alloc() in situations that
* cannot tolerate TLS variable access.
*/
static void *
a0ialloc(size_t size, bool zero, bool is_internal) {
if (unlikely(malloc_init_a0())) {
return NULL;
}
return iallocztm(TSDN_NULL, size, sz_size2index(size), zero, NULL,
is_internal, arena_get(TSDN_NULL, 0, true), true);
}
static void
a0idalloc(void *ptr, bool is_internal) {
idalloctm(TSDN_NULL, ptr, NULL, NULL, is_internal, true);
}
void *
a0malloc(size_t size) {
return a0ialloc(size, false, true);
}
void
a0dalloc(void *ptr) {
a0idalloc(ptr, true);
}
/*
* FreeBSD's libc uses the bootstrap_*() functions in bootstrap-senstive
* situations that cannot tolerate TLS variable access (TLS allocation and very
* early internal data structure initialization).
*/
void *
bootstrap_malloc(size_t size) {
if (unlikely(size == 0)) {
size = 1;
}
return a0ialloc(size, false, false);
}
void *
bootstrap_calloc(size_t num, size_t size) {
size_t num_size;
num_size = num * size;
if (unlikely(num_size == 0)) {
assert(num == 0 || size == 0);
num_size = 1;
}
return a0ialloc(num_size, true, false);
}
void
bootstrap_free(void *ptr) {
if (unlikely(ptr == NULL)) {
return;
}
a0idalloc(ptr, false);
}
void
arena_set(unsigned ind, arena_t *arena) {
atomic_store_p(&arenas[ind], arena, ATOMIC_RELEASE);
}
static void
narenas_total_set(unsigned narenas) {
atomic_store_u(&narenas_total, narenas, ATOMIC_RELEASE);
}
static void
narenas_total_inc(void) {
atomic_fetch_add_u(&narenas_total, 1, ATOMIC_RELEASE);
}
unsigned
narenas_total_get(void) {
return atomic_load_u(&narenas_total, ATOMIC_ACQUIRE);
}
/* Create a new arena and insert it into the arenas array at index ind. */
static arena_t *
arena_init_locked(tsdn_t *tsdn, unsigned ind, const arena_config_t *config) {
arena_t *arena;
assert(ind <= narenas_total_get());
if (ind >= MALLOCX_ARENA_LIMIT) {
return NULL;
}
if (ind == narenas_total_get()) {
narenas_total_inc();
}
/*
* Another thread may have already initialized arenas[ind] if it's an
* auto arena.
*/
arena = arena_get(tsdn, ind, false);
if (arena != NULL) {
assert(arena_is_auto(arena));
return arena;
}
/* Actually initialize the arena. */
arena = arena_new(tsdn, ind, config);
return arena;
}
static void
arena_new_create_background_thread(tsdn_t *tsdn, unsigned ind) {
if (ind == 0) {
return;
}
/*
* Avoid creating a new background thread just for the huge arena, which
* purges eagerly by default.
*/
if (have_background_thread && !arena_is_huge(ind)) {
if (background_thread_create(tsdn_tsd(tsdn), ind)) {
malloc_printf("<jemalloc>: error in background thread "
"creation for arena %u. Abort.\n", ind);
abort();
}
}
}
arena_t *
arena_init(tsdn_t *tsdn, unsigned ind, const arena_config_t *config) {
arena_t *arena;
malloc_mutex_lock(tsdn, &arenas_lock);
arena = arena_init_locked(tsdn, ind, config);
malloc_mutex_unlock(tsdn, &arenas_lock);
arena_new_create_background_thread(tsdn, ind);
return arena;
}
static void
arena_bind(tsd_t *tsd, unsigned ind, bool internal) {
arena_t *arena = arena_get(tsd_tsdn(tsd), ind, false);
arena_nthreads_inc(arena, internal);
if (internal) {
tsd_iarena_set(tsd, arena);
} else {
tsd_arena_set(tsd, arena);
unsigned shard = atomic_fetch_add_u(&arena->binshard_next, 1,
ATOMIC_RELAXED);
tsd_binshards_t *bins = tsd_binshardsp_get(tsd);
for (unsigned i = 0; i < SC_NBINS; i++) {
assert(bin_infos[i].n_shards > 0 &&
bin_infos[i].n_shards <= BIN_SHARDS_MAX);
bins->binshard[i] = shard % bin_infos[i].n_shards;
}
}
}
void
arena_migrate(tsd_t *tsd, unsigned oldind, unsigned newind) {
arena_t *oldarena, *newarena;
oldarena = arena_get(tsd_tsdn(tsd), oldind, false);
newarena = arena_get(tsd_tsdn(tsd), newind, false);
arena_nthreads_dec(oldarena, false);
arena_nthreads_inc(newarena, false);
tsd_arena_set(tsd, newarena);
}
static void
arena_unbind(tsd_t *tsd, unsigned ind, bool internal) {
arena_t *arena;
arena = arena_get(tsd_tsdn(tsd), ind, false);
arena_nthreads_dec(arena, internal);
if (internal) {
tsd_iarena_set(tsd, NULL);
} else {
tsd_arena_set(tsd, NULL);
}
}
/* Slow path, called only by arena_choose(). */
arena_t *
arena_choose_hard(tsd_t *tsd, bool internal) {
arena_t *ret JEMALLOC_CC_SILENCE_INIT(NULL);
if (have_percpu_arena && PERCPU_ARENA_ENABLED(opt_percpu_arena)) {
unsigned choose = percpu_arena_choose();
ret = arena_get(tsd_tsdn(tsd), choose, true);
assert(ret != NULL);
arena_bind(tsd, arena_ind_get(ret), false);
arena_bind(tsd, arena_ind_get(ret), true);
return ret;
}
if (narenas_auto > 1) {
unsigned i, j, choose[2], first_null;
bool is_new_arena[2];
/*
* Determine binding for both non-internal and internal
* allocation.
*
* choose[0]: For application allocation.
* choose[1]: For internal metadata allocation.
*/
for (j = 0; j < 2; j++) {
choose[j] = 0;
is_new_arena[j] = false;
}
first_null = narenas_auto;
malloc_mutex_lock(tsd_tsdn(tsd), &arenas_lock);
assert(arena_get(tsd_tsdn(tsd), 0, false) != NULL);
for (i = 1; i < narenas_auto; i++) {
if (arena_get(tsd_tsdn(tsd), i, false) != NULL) {
/*
* Choose the first arena that has the lowest
* number of threads assigned to it.
*/
for (j = 0; j < 2; j++) {
if (arena_nthreads_get(arena_get(
tsd_tsdn(tsd), i, false), !!j) <
arena_nthreads_get(arena_get(
tsd_tsdn(tsd), choose[j], false),
!!j)) {
choose[j] = i;
}
}
} else if (first_null == narenas_auto) {
/*
* Record the index of the first uninitialized
* arena, in case all extant arenas are in use.
*
* NB: It is possible for there to be
* discontinuities in terms of initialized
* versus uninitialized arenas, due to the
* "thread.arena" mallctl.
*/
first_null = i;
}
}
for (j = 0; j < 2; j++) {
if (arena_nthreads_get(arena_get(tsd_tsdn(tsd),
choose[j], false), !!j) == 0 || first_null ==
narenas_auto) {
/*
* Use an unloaded arena, or the least loaded
* arena if all arenas are already initialized.
*/
if (!!j == internal) {
ret = arena_get(tsd_tsdn(tsd),
choose[j], false);
}
} else {
arena_t *arena;
/* Initialize a new arena. */
choose[j] = first_null;
arena = arena_init_locked(tsd_tsdn(tsd),
choose[j], &arena_config_default);
if (arena == NULL) {
malloc_mutex_unlock(tsd_tsdn(tsd),
&arenas_lock);
return NULL;
}
is_new_arena[j] = true;
if (!!j == internal) {
ret = arena;
}
}
arena_bind(tsd, choose[j], !!j);
}
malloc_mutex_unlock(tsd_tsdn(tsd), &arenas_lock);
for (j = 0; j < 2; j++) {
if (is_new_arena[j]) {
assert(choose[j] > 0);
arena_new_create_background_thread(
tsd_tsdn(tsd), choose[j]);
}
}
} else {
ret = arena_get(tsd_tsdn(tsd), 0, false);
arena_bind(tsd, 0, false);
arena_bind(tsd, 0, true);
}
return ret;
}
void
iarena_cleanup(tsd_t *tsd) {
arena_t *iarena;
iarena = tsd_iarena_get(tsd);
if (iarena != NULL) {
arena_unbind(tsd, arena_ind_get(iarena), true);
}
}
void
arena_cleanup(tsd_t *tsd) {
arena_t *arena;
arena = tsd_arena_get(tsd);
if (arena != NULL) {
arena_unbind(tsd, arena_ind_get(arena), false);
}
}
static void
stats_print_atexit(void) {
if (config_stats) {
tsdn_t *tsdn;
unsigned narenas, i;
tsdn = tsdn_fetch();
/*
* Merge stats from extant threads. This is racy, since
* individual threads do not lock when recording tcache stats
* events. As a consequence, the final stats may be slightly
* out of date by the time they are reported, if other threads
* continue to allocate.
*/
for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
arena_t *arena = arena_get(tsdn, i, false);
if (arena != NULL) {
tcache_slow_t *tcache_slow;
malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx);
ql_foreach(tcache_slow, &arena->tcache_ql,
link) {
tcache_stats_merge(tsdn,
tcache_slow->tcache, arena);
}
malloc_mutex_unlock(tsdn,
&arena->tcache_ql_mtx);
}
}
}
je_malloc_stats_print(NULL, NULL, opt_stats_print_opts);
}
/*
* Ensure that we don't hold any locks upon entry to or exit from allocator
* code (in a "broad" sense that doesn't count a reentrant allocation as an
* entrance or exit).
*/
JEMALLOC_ALWAYS_INLINE void
check_entry_exit_locking(tsdn_t *tsdn) {
if (!config_debug) {
return;
}
if (tsdn_null(tsdn)) {
return;
}
tsd_t *tsd = tsdn_tsd(tsdn);
/*
* It's possible we hold locks at entry/exit if we're in a nested
* allocation.
*/
int8_t reentrancy_level = tsd_reentrancy_level_get(tsd);
if (reentrancy_level != 0) {
return;
}
witness_assert_lockless(tsdn_witness_tsdp_get(tsdn));
}
/*
* End miscellaneous support functions.
*/
/******************************************************************************/
/*
* Begin initialization functions.
*/
static char *
jemalloc_secure_getenv(const char *name) {
#ifdef JEMALLOC_HAVE_SECURE_GETENV
return secure_getenv(name);
#else
# ifdef JEMALLOC_HAVE_ISSETUGID
if (issetugid() != 0) {
return NULL;
}
# endif
return getenv(name);
#endif
}
static unsigned
malloc_ncpus(void) {
long result;
#ifdef _WIN32
SYSTEM_INFO si;
GetSystemInfo(&si);
result = si.dwNumberOfProcessors;
#elif defined(CPU_COUNT)
/*
* glibc >= 2.6 has the CPU_COUNT macro.
*
* glibc's sysconf() uses isspace(). glibc allocates for the first time
* *before* setting up the isspace tables. Therefore we need a
* different method to get the number of CPUs.
*
* The getaffinity approach is also preferred when only a subset of CPUs
* is available, to avoid using more arenas than necessary.
*/
{
# if defined(__FreeBSD__) || defined(__DragonFly__)
cpuset_t set;
# else
cpu_set_t set;
# endif
# if defined(JEMALLOC_HAVE_SCHED_SETAFFINITY)
sched_getaffinity(0, sizeof(set), &set);
# else
pthread_getaffinity_np(pthread_self(), sizeof(set), &set);
# endif
result = CPU_COUNT(&set);
}
#else
result = sysconf(_SC_NPROCESSORS_ONLN);
#endif
return ((result == -1) ? 1 : (unsigned)result);
}
static void
init_opt_stats_opts(const char *v, size_t vlen, char *dest) {
size_t opts_len = strlen(dest);
assert(opts_len <= stats_print_tot_num_options);
for (size_t i = 0; i < vlen; i++) {
switch (v[i]) {
#define OPTION(o, v, d, s) case o: break;
STATS_PRINT_OPTIONS
#undef OPTION
default: continue;
}
if (strchr(dest, v[i]) != NULL) {
/* Ignore repeated. */
continue;
}
dest[opts_len++] = v[i];
dest[opts_len] = '\0';
assert(opts_len <= stats_print_tot_num_options);
}
assert(opts_len == strlen(dest));
}
/* Reads the next size pair in a multi-sized option. */
static bool
malloc_conf_multi_sizes_next(const char **slab_size_segment_cur,
size_t *vlen_left, size_t *slab_start, size_t *slab_end, size_t *new_size) {
const char *cur = *slab_size_segment_cur;
char *end;
uintmax_t um;
set_errno(0);
/* First number, then '-' */
um = malloc_strtoumax(cur, &end, 0);
if (get_errno() != 0 || *end != '-') {
return true;
}
*slab_start = (size_t)um;
cur = end + 1;
/* Second number, then ':' */
um = malloc_strtoumax(cur, &end, 0);
if (get_errno() != 0 || *end != ':') {
return true;
}
*slab_end = (size_t)um;
cur = end + 1;
/* Last number */
um = malloc_strtoumax(cur, &end, 0);
if (get_errno() != 0) {
return true;
}
*new_size = (size_t)um;
/* Consume the separator if there is one. */
if (*end == '|') {
end++;
}
*vlen_left -= end - *slab_size_segment_cur;
*slab_size_segment_cur = end;
return false;
}
static bool
malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p,
char const **v_p, size_t *vlen_p) {
bool accept;
const char *opts = *opts_p;
*k_p = opts;
for (accept = false; !accept;) {
switch (*opts) {
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R':
case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
case 'Y': case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
case 'm': case 'n': case 'o': case 'p': case 'q': case 'r':
case 's': case 't': case 'u': case 'v': case 'w': case 'x':
case 'y': case 'z':
case '0': case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
case '_':
opts++;
break;
case ':':
opts++;
*klen_p = (uintptr_t)opts - 1 - (uintptr_t)*k_p;
*v_p = opts;
accept = true;
break;
case '\0':
if (opts != *opts_p) {
malloc_write("<jemalloc>: Conf string ends "
"with key\n");
}
return true;
default:
malloc_write("<jemalloc>: Malformed conf string\n");
return true;
}
}
for (accept = false; !accept;) {
switch (*opts) {
case ',':
opts++;
/*
* Look ahead one character here, because the next time
* this function is called, it will assume that end of
* input has been cleanly reached if no input remains,
* but we have optimistically already consumed the
* comma if one exists.
*/
if (*opts == '\0') {
malloc_write("<jemalloc>: Conf string ends "
"with comma\n");
}
*vlen_p = (uintptr_t)opts - 1 - (uintptr_t)*v_p;
accept = true;
break;
case '\0':
*vlen_p = (uintptr_t)opts - (uintptr_t)*v_p;
accept = true;
break;
default:
opts++;
break;
}
}
*opts_p = opts;
return false;
}
static void
malloc_abort_invalid_conf(void) {
assert(opt_abort_conf);
malloc_printf("<jemalloc>: Abort (abort_conf:true) on invalid conf "
"value (see above).\n");
abort();
}
static void
malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v,
size_t vlen) {
malloc_printf("<jemalloc>: %s: %.*s:%.*s\n", msg, (int)klen, k,
(int)vlen, v);
/* If abort_conf is set, error out after processing all options. */
const char *experimental = "experimental_";
if (strncmp(k, experimental, strlen(experimental)) == 0) {
/* However, tolerate experimental features. */
return;
}
had_conf_error = true;
}
static void
malloc_slow_flag_init(void) {
/*
* Combine the runtime options into malloc_slow for fast path. Called
* after processing all the options.
*/
malloc_slow_flags |= (opt_junk_alloc ? flag_opt_junk_alloc : 0)
| (opt_junk_free ? flag_opt_junk_free : 0)
| (opt_zero ? flag_opt_zero : 0)
| (opt_utrace ? flag_opt_utrace : 0)
| (opt_xmalloc ? flag_opt_xmalloc : 0);
malloc_slow = (malloc_slow_flags != 0);
}
/* Number of sources for initializing malloc_conf */
#define MALLOC_CONF_NSOURCES 5
static const char *
obtain_malloc_conf(unsigned which_source, char buf[PATH_MAX + 1]) {
if (config_debug) {
static unsigned read_source = 0;
/*
* Each source should only be read once, to minimize # of
* syscalls on init.
*/
assert(read_source++ == which_source);
}
assert(which_source < MALLOC_CONF_NSOURCES);
const char *ret;
switch (which_source) {
case 0:
ret = config_malloc_conf;
break;
case 1:
if (je_malloc_conf != NULL) {
/* Use options that were compiled into the program. */
ret = je_malloc_conf;
} else {
/* No configuration specified. */
ret = NULL;
}
break;
case 2: {
ssize_t linklen = 0;
#ifndef _WIN32
int saved_errno = errno;
const char *linkname =
# ifdef JEMALLOC_PREFIX
"/etc/"JEMALLOC_PREFIX"malloc.conf"
# else
"/etc/malloc.conf"
# endif
;
/*
* Try to use the contents of the "/etc/malloc.conf" symbolic
* link's name.
*/
#ifndef JEMALLOC_READLINKAT
linklen = readlink(linkname, buf, PATH_MAX);
#else
linklen = readlinkat(AT_FDCWD, linkname, buf, PATH_MAX);
#endif
if (linklen == -1) {
/* No configuration specified. */
linklen = 0;
/* Restore errno. */
set_errno(saved_errno);
}
#endif
buf[linklen] = '\0';
ret = buf;
break;
} case 3: {
const char *envname =
#ifdef JEMALLOC_PREFIX
JEMALLOC_CPREFIX"MALLOC_CONF"
#else
"MALLOC_CONF"
#endif
;
if ((ret = jemalloc_secure_getenv(envname)) != NULL) {
/*
* Do nothing; opts is already initialized to the value
* of the MALLOC_CONF environment variable.
*/
} else {
/* No configuration specified. */
ret = NULL;
}
break;
} case 4: {
ret = je_malloc_conf_2_conf_harder;
break;
} default:
not_reached();
ret = NULL;
}
return ret;
}
static void
malloc_conf_init_helper(sc_data_t *sc_data, unsigned bin_shard_sizes[SC_NBINS],
bool initial_call, const char *opts_cache[MALLOC_CONF_NSOURCES],
char buf[PATH_MAX + 1]) {
static const char *opts_explain[MALLOC_CONF_NSOURCES] = {
"string specified via --with-malloc-conf",
"string pointed to by the global variable malloc_conf",
"\"name\" of the file referenced by the symbolic link named "
"/etc/malloc.conf",
"value of the environment variable MALLOC_CONF",
"string pointed to by the global variable "
"malloc_conf_2_conf_harder",
};
unsigned i;
const char *opts, *k, *v;
size_t klen, vlen;
for (i = 0; i < MALLOC_CONF_NSOURCES; i++) {
/* Get runtime configuration. */
if (initial_call) {
opts_cache[i] = obtain_malloc_conf(i, buf);
}
opts = opts_cache[i];
if (!initial_call && opt_confirm_conf) {
malloc_printf(
"<jemalloc>: malloc_conf #%u (%s): \"%s\"\n",
i + 1, opts_explain[i], opts != NULL ? opts : "");
}
if (opts == NULL) {
continue;
}
while (*opts != '\0' && !malloc_conf_next(&opts, &k, &klen, &v,
&vlen)) {
#define CONF_ERROR(msg, k, klen, v, vlen) \
if (!initial_call) { \
malloc_conf_error( \
msg, k, klen, v, vlen); \
cur_opt_valid = false; \
}
#define CONF_CONTINUE { \
if (!initial_call && opt_confirm_conf \
&& cur_opt_valid) { \
malloc_printf("<jemalloc>: -- " \
"Set conf value: %.*s:%.*s" \
"\n", (int)klen, k, \
(int)vlen, v); \
} \
continue; \
}
#define CONF_MATCH(n) \
(sizeof(n)-1 == klen && strncmp(n, k, klen) == 0)
#define CONF_MATCH_VALUE(n) \
(sizeof(n)-1 == vlen && strncmp(n, v, vlen) == 0)
#define CONF_HANDLE_BOOL(o, n) \
if (CONF_MATCH(n)) { \
if (CONF_MATCH_VALUE("true")) { \
o = true; \
} else if (CONF_MATCH_VALUE("false")) { \
o = false; \
} else { \
CONF_ERROR("Invalid conf value",\
k, klen, v, vlen); \
} \
CONF_CONTINUE; \
}
/*
* One of the CONF_MIN macros below expands, in one of the use points,
* to "unsigned integer < 0", which is always false, triggering the
* GCC -Wtype-limits warning, which we disable here and re-enable below.
*/
JEMALLOC_DIAGNOSTIC_PUSH
JEMALLOC_DIAGNOSTIC_IGNORE_TYPE_LIMITS
#define CONF_DONT_CHECK_MIN(um, min) false
#define CONF_CHECK_MIN(um, min) ((um) < (min))
#define CONF_DONT_CHECK_MAX(um, max) false
#define CONF_CHECK_MAX(um, max) ((um) > (max))
#define CONF_VALUE_READ(max_t, result) \
char *end; \
set_errno(0); \
result = (max_t)malloc_strtoumax(v, &end, 0);
#define CONF_VALUE_READ_FAIL() \
(get_errno() != 0 || (uintptr_t)end - (uintptr_t)v != vlen)
#define CONF_HANDLE_T(t, max_t, o, n, min, max, check_min, check_max, clip) \
if (CONF_MATCH(n)) { \
max_t mv; \
CONF_VALUE_READ(max_t, mv) \
if (CONF_VALUE_READ_FAIL()) { \
CONF_ERROR("Invalid conf value",\
k, klen, v, vlen); \
} else if (clip) { \
if (check_min(mv, (t)(min))) { \
o = (t)(min); \
} else if ( \
check_max(mv, (t)(max))) { \
o = (t)(max); \
} else { \
o = (t)mv; \
} \
} else { \
if (check_min(mv, (t)(min)) || \
check_max(mv, (t)(max))) { \
CONF_ERROR( \
"Out-of-range " \
"conf value", \
k, klen, v, vlen); \
} else { \
o = (t)mv; \
} \
} \
CONF_CONTINUE; \
}
#define CONF_HANDLE_T_U(t, o, n, min, max, check_min, check_max, clip) \
CONF_HANDLE_T(t, uintmax_t, o, n, min, max, check_min, \
check_max, clip)
#define CONF_HANDLE_T_SIGNED(t, o, n, min, max, check_min, check_max, clip)\
CONF_HANDLE_T(t, intmax_t, o, n, min, max, check_min, \
check_max, clip)
#define CONF_HANDLE_UNSIGNED(o, n, min, max, check_min, check_max, \
clip) \
CONF_HANDLE_T_U(unsigned, o, n, min, max, \
check_min, check_max, clip)
#define CONF_HANDLE_SIZE_T(o, n, min, max, check_min, check_max, clip) \
CONF_HANDLE_T_U(size_t, o, n, min, max, \
check_min, check_max, clip)
#define CONF_HANDLE_INT64_T(o, n, min, max, check_min, check_max, clip) \
CONF_HANDLE_T_SIGNED(int64_t, o, n, min, max, \
check_min, check_max, clip)
#define CONF_HANDLE_UINT64_T(o, n, min, max, check_min, check_max, clip)\
CONF_HANDLE_T_U(uint64_t, o, n, min, max, \
check_min, check_max, clip)
#define CONF_HANDLE_SSIZE_T(o, n, min, max) \
CONF_HANDLE_T_SIGNED(ssize_t, o, n, min, max, \
CONF_CHECK_MIN, CONF_CHECK_MAX, false)
#define CONF_HANDLE_CHAR_P(o, n, d) \
if (CONF_MATCH(n)) { \
size_t cpylen = (vlen <= \
sizeof(o)-1) ? vlen : \
sizeof(o)-1; \
strncpy(o, v, cpylen); \
o[cpylen] = '\0'; \
CONF_CONTINUE; \
}
bool cur_opt_valid = true;
CONF_HANDLE_BOOL(opt_confirm_conf, "confirm_conf")
if (initial_call) {
continue;
}
CONF_HANDLE_BOOL(opt_abort, "abort")
CONF_HANDLE_BOOL(opt_abort_conf, "abort_conf")
CONF_HANDLE_BOOL(opt_trust_madvise, "trust_madvise")
if (strncmp("metadata_thp", k, klen) == 0) {
int i;
bool match = false;
for (i = 0; i < metadata_thp_mode_limit; i++) {
if (strncmp(metadata_thp_mode_names[i],
v, vlen) == 0) {
opt_metadata_thp = i;
match = true;
break;
}
}
if (!match) {
CONF_ERROR("Invalid conf value",
k, klen, v, vlen);
}
CONF_CONTINUE;
}
CONF_HANDLE_BOOL(opt_retain, "retain")
if (strncmp("dss", k, klen) == 0) {
int i;
bool match = false;
for (i = 0; i < dss_prec_limit; i++) {
if (strncmp(dss_prec_names[i], v, vlen)
== 0) {
if (extent_dss_prec_set(i)) {
CONF_ERROR(
"Error setting dss",
k, klen, v, vlen);
} else {
opt_dss =
dss_prec_names[i];
match = true;
break;
}
}
}
if (!match) {
CONF_ERROR("Invalid conf value",
k, klen, v, vlen);
}
CONF_CONTINUE;
}
if (CONF_MATCH("narenas")) {
if (CONF_MATCH_VALUE("default")) {
opt_narenas = 0;
CONF_CONTINUE;
} else {
CONF_HANDLE_UNSIGNED(opt_narenas,
"narenas", 1, UINT_MAX,
CONF_CHECK_MIN, CONF_DONT_CHECK_MAX,
/* clip */ false)
}
}
if (CONF_MATCH("narenas_ratio")) {
char *end;
bool err = fxp_parse(&opt_narenas_ratio, v,
&end);
if (err || (size_t)(end - v) != vlen) {
CONF_ERROR("Invalid conf value",
k, klen, v, vlen);
}
CONF_CONTINUE;
}
if (CONF_MATCH("bin_shards")) {
const char *bin_shards_segment_cur = v;
size_t vlen_left = vlen;
do {
size_t size_start;
size_t size_end;
size_t nshards;
bool err = malloc_conf_multi_sizes_next(
&bin_shards_segment_cur, &vlen_left,
&size_start, &size_end, &nshards);
if (err || bin_update_shard_size(
bin_shard_sizes, size_start,
size_end, nshards)) {
CONF_ERROR(
"Invalid settings for "
"bin_shards", k, klen, v,
vlen);
break;
}
} while (vlen_left > 0);
CONF_CONTINUE;
}
CONF_HANDLE_INT64_T(opt_mutex_max_spin,
"mutex_max_spin", -1, INT64_MAX, CONF_CHECK_MIN,
CONF_DONT_CHECK_MAX, false);
CONF_HANDLE_SSIZE_T(opt_dirty_decay_ms,
"dirty_decay_ms", -1, NSTIME_SEC_MAX * KQU(1000) <
QU(SSIZE_MAX) ? NSTIME_SEC_MAX * KQU(1000) :
SSIZE_MAX);
CONF_HANDLE_SSIZE_T(opt_muzzy_decay_ms,
"muzzy_decay_ms", -1, NSTIME_SEC_MAX * KQU(1000) <
QU(SSIZE_MAX) ? NSTIME_SEC_MAX * KQU(1000) :
SSIZE_MAX);
CONF_HANDLE_BOOL(opt_stats_print, "stats_print")
if (CONF_MATCH("stats_print_opts")) {
init_opt_stats_opts(v, vlen,
opt_stats_print_opts);
CONF_CONTINUE;
}
CONF_HANDLE_INT64_T(opt_stats_interval,
"stats_interval", -1, INT64_MAX,
CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, false)
if (CONF_MATCH("stats_interval_opts")) {
init_opt_stats_opts(v, vlen,
opt_stats_interval_opts);
CONF_CONTINUE;
}
if (config_fill) {
if (CONF_MATCH("junk")) {
if (CONF_MATCH_VALUE("true")) {
opt_junk = "true";
opt_junk_alloc = opt_junk_free =
true;
} else if (CONF_MATCH_VALUE("false")) {
opt_junk = "false";
opt_junk_alloc = opt_junk_free =
false;
} else if (CONF_MATCH_VALUE("alloc")) {
opt_junk = "alloc";
opt_junk_alloc = true;
opt_junk_free = false;
} else if (CONF_MATCH_VALUE("free")) {
opt_junk = "free";
opt_junk_alloc = false;
opt_junk_free = true;
} else {
CONF_ERROR(
"Invalid conf value",
k, klen, v, vlen);
}
CONF_CONTINUE;
}
CONF_HANDLE_BOOL(opt_zero, "zero")
}
if (config_utrace) {
CONF_HANDLE_BOOL(opt_utrace, "utrace")
}
if (config_xmalloc) {
CONF_HANDLE_BOOL(opt_xmalloc, "xmalloc")
}
if (config_enable_cxx) {
CONF_HANDLE_BOOL(
opt_experimental_infallible_new,
"experimental_infallible_new")
}
CONF_HANDLE_BOOL(opt_tcache, "tcache")
CONF_HANDLE_SIZE_T(opt_tcache_max, "tcache_max",
0, TCACHE_MAXCLASS_LIMIT, CONF_DONT_CHECK_MIN,
CONF_CHECK_MAX, /* clip */ true)
if (CONF_MATCH("lg_tcache_max")) {
size_t m;
CONF_VALUE_READ(size_t, m)
if (CONF_VALUE_READ_FAIL()) {
CONF_ERROR("Invalid conf value",
k, klen, v, vlen);
} else {
/* clip if necessary */
if (m > TCACHE_LG_MAXCLASS_LIMIT) {
m = TCACHE_LG_MAXCLASS_LIMIT;
}
opt_tcache_max = (size_t)1 << m;
}
CONF_CONTINUE;
}
/*
* Anyone trying to set a value outside -16 to 16 is
* deeply confused.
*/
CONF_HANDLE_SSIZE_T(opt_lg_tcache_nslots_mul,
"lg_tcache_nslots_mul", -16, 16)
/* Ditto with values past 2048. */
CONF_HANDLE_UNSIGNED(opt_tcache_nslots_small_min,
"tcache_nslots_small_min", 1, 2048,
CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true)
CONF_HANDLE_UNSIGNED(opt_tcache_nslots_small_max,
"tcache_nslots_small_max", 1, 2048,
CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true)
CONF_HANDLE_UNSIGNED(opt_tcache_nslots_large,
"tcache_nslots_large", 1, 2048,
CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true)
CONF_HANDLE_SIZE_T(opt_tcache_gc_incr_bytes,
"tcache_gc_incr_bytes", 1024, SIZE_T_MAX,
CONF_CHECK_MIN, CONF_DONT_CHECK_MAX,
/* clip */ true)
CONF_HANDLE_SIZE_T(opt_tcache_gc_delay_bytes,
"tcache_gc_delay_bytes", 0, SIZE_T_MAX,
CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX,
/* clip */ false)
CONF_HANDLE_UNSIGNED(opt_lg_tcache_flush_small_div,
"lg_tcache_flush_small_div", 1, 16,
CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true)
CONF_HANDLE_UNSIGNED(opt_lg_tcache_flush_large_div,
"lg_tcache_flush_large_div", 1, 16,
CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true)
/*
* The runtime option of oversize_threshold remains
* undocumented. It may be tweaked in the next major
* release (6.0). The default value 8M is rather
* conservative / safe. Tuning it further down may
* improve fragmentation a bit more, but may also cause
* contention on the huge arena.
*/
CONF_HANDLE_SIZE_T(opt_oversize_threshold,
"oversize_threshold", 0, SC_LARGE_MAXCLASS,
CONF_DONT_CHECK_MIN, CONF_CHECK_MAX, false)
CONF_HANDLE_SIZE_T(opt_lg_extent_max_active_fit,
"lg_extent_max_active_fit", 0,
(sizeof(size_t) << 3), CONF_DONT_CHECK_MIN,
CONF_CHECK_MAX, false)
if (strncmp("percpu_arena", k, klen) == 0) {
bool match = false;
for (int i = percpu_arena_mode_names_base; i <
percpu_arena_mode_names_limit; i++) {
if (strncmp(percpu_arena_mode_names[i],
v, vlen) == 0) {
if (!have_percpu_arena) {
CONF_ERROR(
"No getcpu support",
k, klen, v, vlen);
}
opt_percpu_arena = i;
match = true;
break;
}
}
if (!match) {
CONF_ERROR("Invalid conf value",
k, klen, v, vlen);
}
CONF_CONTINUE;
}
CONF_HANDLE_BOOL(opt_background_thread,
"background_thread");
CONF_HANDLE_SIZE_T(opt_max_background_threads,
"max_background_threads", 1,
opt_max_background_threads,
CONF_CHECK_MIN, CONF_CHECK_MAX,
true);
CONF_HANDLE_BOOL(opt_hpa, "hpa")
CONF_HANDLE_SIZE_T(opt_hpa_opts.slab_max_alloc,
"hpa_slab_max_alloc", PAGE, HUGEPAGE,
CONF_CHECK_MIN, CONF_CHECK_MAX, true);
/*
* Accept either a ratio-based or an exact hugification
* threshold.
*/
CONF_HANDLE_SIZE_T(opt_hpa_opts.hugification_threshold,
"hpa_hugification_threshold", PAGE, HUGEPAGE,
CONF_CHECK_MIN, CONF_CHECK_MAX, true);
if (CONF_MATCH("hpa_hugification_threshold_ratio")) {
fxp_t ratio;
char *end;
bool err = fxp_parse(&ratio, v,
&end);
if (err || (size_t)(end - v) != vlen
|| ratio > FXP_INIT_INT(1)) {
CONF_ERROR("Invalid conf value",
k, klen, v, vlen);
} else {
opt_hpa_opts.hugification_threshold =
fxp_mul_frac(HUGEPAGE, ratio);
}
CONF_CONTINUE;
}
CONF_HANDLE_UINT64_T(
opt_hpa_opts.hugify_delay_ms, "hpa_hugify_delay_ms",
0, 0, CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX,
false);
CONF_HANDLE_UINT64_T(
opt_hpa_opts.min_purge_interval_ms,
"hpa_min_purge_interval_ms", 0, 0,
CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX, false);
if (CONF_MATCH("hpa_dirty_mult")) {
if (CONF_MATCH_VALUE("-1")) {
opt_hpa_opts.dirty_mult = (fxp_t)-1;
CONF_CONTINUE;
}
fxp_t ratio;
char *end;
bool err = fxp_parse(&ratio, v,
&end);
if (err || (size_t)(end - v) != vlen) {
CONF_ERROR("Invalid conf value",
k, klen, v, vlen);
} else {
opt_hpa_opts.dirty_mult = ratio;
}
CONF_CONTINUE;
}
CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.nshards,
"hpa_sec_nshards", 0, 0, CONF_CHECK_MIN,
CONF_DONT_CHECK_MAX, true);
CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.max_alloc,
"hpa_sec_max_alloc", PAGE, 0, CONF_CHECK_MIN,
CONF_DONT_CHECK_MAX, true);
CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.max_bytes,
"hpa_sec_max_bytes", PAGE, 0, CONF_CHECK_MIN,
CONF_DONT_CHECK_MAX, true);
CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.bytes_after_flush,
"hpa_sec_bytes_after_flush", PAGE, 0,
CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, true);
CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.batch_fill_extra,
"hpa_sec_batch_fill_extra", 0, HUGEPAGE_PAGES,
CONF_CHECK_MIN, CONF_CHECK_MAX, true);
if (CONF_MATCH("slab_sizes")) {
if (CONF_MATCH_VALUE("default")) {
sc_data_init(sc_data);
CONF_CONTINUE;
}
bool err;
const char *slab_size_segment_cur = v;
size_t vlen_left = vlen;
do {
size_t slab_start;
size_t slab_end;
size_t pgs;
err = malloc_conf_multi_sizes_next(
&slab_size_segment_cur,
&vlen_left, &slab_start, &slab_end,
&pgs);
if (!err) {
sc_data_update_slab_size(
sc_data, slab_start,
slab_end, (int)pgs);
} else {
CONF_ERROR("Invalid settings "
"for slab_sizes",
k, klen, v, vlen);
}
} while (!err && vlen_left > 0);
CONF_CONTINUE;
}
if (config_prof) {
CONF_HANDLE_BOOL(opt_prof, "prof")
CONF_HANDLE_CHAR_P(opt_prof_prefix,
"prof_prefix", "jeprof")
CONF_HANDLE_BOOL(opt_prof_active, "prof_active")
CONF_HANDLE_BOOL(opt_prof_thread_active_init,
"prof_thread_active_init")
CONF_HANDLE_SIZE_T(opt_lg_prof_sample,
"lg_prof_sample", 0, (sizeof(uint64_t) << 3)
- 1, CONF_DONT_CHECK_MIN, CONF_CHECK_MAX,
true)
CONF_HANDLE_BOOL(opt_prof_accum, "prof_accum")
CONF_HANDLE_SSIZE_T(opt_lg_prof_interval,
"lg_prof_interval", -1,
(sizeof(uint64_t) << 3) - 1)
CONF_HANDLE_BOOL(opt_prof_gdump, "prof_gdump")
CONF_HANDLE_BOOL(opt_prof_final, "prof_final")
CONF_HANDLE_BOOL(opt_prof_leak, "prof_leak")
CONF_HANDLE_BOOL(opt_prof_log, "prof_log")
CONF_HANDLE_SSIZE_T(opt_prof_recent_alloc_max,
"prof_recent_alloc_max", -1, SSIZE_MAX)
CONF_HANDLE_BOOL(opt_prof_stats, "prof_stats")
CONF_HANDLE_BOOL(opt_prof_sys_thread_name,
"prof_sys_thread_name")
if (CONF_MATCH("prof_time_resolution")) {
if (CONF_MATCH_VALUE("default")) {
opt_prof_time_res =
prof_time_res_default;
} else if (CONF_MATCH_VALUE("high")) {
if (!config_high_res_timer) {
CONF_ERROR(
"No high resolution"
" timer support",
k, klen, v, vlen);
} else {
opt_prof_time_res =
prof_time_res_high;
}
} else {
CONF_ERROR("Invalid conf value",
k, klen, v, vlen);
}
CONF_CONTINUE;
}
/*
* Undocumented. When set to false, don't
* correct for an unbiasing bug in jeprof
* attribution. This can be handy if you want
* to get consistent numbers from your binary
* across different jemalloc versions, even if
* those numbers are incorrect. The default is
* true.
*/
CONF_HANDLE_BOOL(opt_prof_unbias, "prof_unbias")
}
if (config_log) {
if (CONF_MATCH("log")) {
size_t cpylen = (
vlen <= sizeof(log_var_names) ?
vlen : sizeof(log_var_names) - 1);
strncpy(log_var_names, v, cpylen);
log_var_names[cpylen] = '\0';
CONF_CONTINUE;
}
}
if (CONF_MATCH("thp")) {
bool match = false;
for (int i = 0; i < thp_mode_names_limit; i++) {
if (strncmp(thp_mode_names[i],v, vlen)
== 0) {
if (!have_madvise_huge && !have_memcntl) {
CONF_ERROR(
"No THP support",
k, klen, v, vlen);
}
opt_thp = i;
match = true;
break;
}
}
if (!match) {
CONF_ERROR("Invalid conf value",
k, klen, v, vlen);
}
CONF_CONTINUE;
}
if (CONF_MATCH("zero_realloc")) {
if (CONF_MATCH_VALUE("strict")) {
opt_zero_realloc_action
= zero_realloc_action_strict;
} else if (CONF_MATCH_VALUE("free")) {
opt_zero_realloc_action
= zero_realloc_action_free;
} else if (CONF_MATCH_VALUE("abort")) {
opt_zero_realloc_action
= zero_realloc_action_abort;
} else {
CONF_ERROR("Invalid conf value",
k, klen, v, vlen);
}
CONF_CONTINUE;
}
CONF_HANDLE_SIZE_T(opt_san_guard_small,
"san_guard_small", 0, SIZE_T_MAX,
CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX, false)
CONF_HANDLE_SIZE_T(opt_san_guard_large,
"san_guard_large", 0, SIZE_T_MAX,
CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX, false)
CONF_ERROR("Invalid conf pair", k, klen, v, vlen);
#undef CONF_ERROR
#undef CONF_CONTINUE
#undef CONF_MATCH
#undef CONF_MATCH_VALUE
#undef CONF_HANDLE_BOOL
#undef CONF_DONT_CHECK_MIN
#undef CONF_CHECK_MIN
#undef CONF_DONT_CHECK_MAX
#undef CONF_CHECK_MAX
#undef CONF_HANDLE_T
#undef CONF_HANDLE_T_U
#undef CONF_HANDLE_T_SIGNED
#undef CONF_HANDLE_UNSIGNED
#undef CONF_HANDLE_SIZE_T
#undef CONF_HANDLE_SSIZE_T
#undef CONF_HANDLE_CHAR_P
/* Re-enable diagnostic "-Wtype-limits" */
JEMALLOC_DIAGNOSTIC_POP
}
if (opt_abort_conf && had_conf_error) {
malloc_abort_invalid_conf();
}
}
atomic_store_b(&log_init_done, true, ATOMIC_RELEASE);
}
static void
malloc_conf_init(sc_data_t *sc_data, unsigned bin_shard_sizes[SC_NBINS]) {
const char *opts_cache[MALLOC_CONF_NSOURCES] = {NULL, NULL, NULL, NULL,
NULL};
char buf[PATH_MAX + 1];
/* The first call only set the confirm_conf option and opts_cache */
malloc_conf_init_helper(NULL, NULL, true, opts_cache, buf);
malloc_conf_init_helper(sc_data, bin_shard_sizes, false, opts_cache,
NULL);
}
#undef MALLOC_CONF_NSOURCES
static bool
malloc_init_hard_needed(void) {
if (malloc_initialized() || (IS_INITIALIZER && malloc_init_state ==
malloc_init_recursible)) {
/*
* Another thread initialized the allocator before this one
* acquired init_lock, or this thread is the initializing
* thread, and it is recursively allocating.
*/
return false;
}
#ifdef JEMALLOC_THREADED_INIT
if (malloc_initializer != NO_INITIALIZER && !IS_INITIALIZER) {
/* Busy-wait until the initializing thread completes. */
spin_t spinner = SPIN_INITIALIZER;
do {
malloc_mutex_unlock(TSDN_NULL, &init_lock);
spin_adaptive(&spinner);
malloc_mutex_lock(TSDN_NULL, &init_lock);
} while (!malloc_initialized());
return false;
}
#endif
return true;
}
static bool
malloc_init_hard_a0_locked() {
malloc_initializer = INITIALIZER;
JEMALLOC_DIAGNOSTIC_PUSH
JEMALLOC_DIAGNOSTIC_IGNORE_MISSING_STRUCT_FIELD_INITIALIZERS
sc_data_t sc_data = {0};
JEMALLOC_DIAGNOSTIC_POP
/*
* Ordering here is somewhat tricky; we need sc_boot() first, since that
* determines what the size classes will be, and then
* malloc_conf_init(), since any slab size tweaking will need to be done
* before sz_boot and bin_info_boot, which assume that the values they
* read out of sc_data_global are final.
*/
sc_boot(&sc_data);
unsigned bin_shard_sizes[SC_NBINS];
bin_shard_sizes_boot(bin_shard_sizes);
/*
* prof_boot0 only initializes opt_prof_prefix. We need to do it before
* we parse malloc_conf options, in case malloc_conf parsing overwrites
* it.
*/
if (config_prof) {
prof_boot0();
}
malloc_conf_init(&sc_data, bin_shard_sizes);
sz_boot(&sc_data, opt_cache_oblivious);
bin_info_boot(&sc_data, bin_shard_sizes);
if (opt_stats_print) {
/* Print statistics at exit. */
if (atexit(stats_print_atexit) != 0) {
malloc_write("<jemalloc>: Error in atexit()\n");
if (opt_abort) {
abort();
}
}
}
if (stats_boot()) {
return true;
}
if (pages_boot()) {
return true;
}
if (base_boot(TSDN_NULL)) {
return true;
}
/* emap_global is static, hence zeroed. */
if (emap_init(&arena_emap_global, b0get(), /* zeroed */ true)) {
return true;
}
if (extent_boot()) {
return true;
}
if (ctl_boot()) {
return true;
}
if (config_prof) {
prof_boot1();
}
if (opt_hpa && !hpa_supported()) {
malloc_printf("<jemalloc>: HPA not supported in the current "
"configuration; %s.",
opt_abort_conf ? "aborting" : "disabling");
if (opt_abort_conf) {
malloc_abort_invalid_conf();
} else {
opt_hpa = false;
}
}
if (arena_boot(&sc_data, b0get(), opt_hpa)) {
return true;
}
if (tcache_boot(TSDN_NULL, b0get())) {
return true;
}
if (malloc_mutex_init(&arenas_lock, "arenas", WITNESS_RANK_ARENAS,
malloc_mutex_rank_exclusive)) {
return true;
}
hook_boot();
/*
* Create enough scaffolding to allow recursive allocation in
* malloc_ncpus().
*/
narenas_auto = 1;
manual_arena_base = narenas_auto + 1;
memset(arenas, 0, sizeof(arena_t *) * narenas_auto);
/*
* Initialize one arena here. The rest are lazily created in
* arena_choose_hard().
*/
if (arena_init(TSDN_NULL, 0, &arena_config_default) == NULL) {
return true;
}
a0 = arena_get(TSDN_NULL, 0, false);
if (opt_hpa && !hpa_supported()) {
malloc_printf("<jemalloc>: HPA not supported in the current "
"configuration; %s.",
opt_abort_conf ? "aborting" : "disabling");
if (opt_abort_conf) {
malloc_abort_invalid_conf();
} else {
opt_hpa = false;
}
} else if (opt_hpa) {
hpa_shard_opts_t hpa_shard_opts = opt_hpa_opts;
hpa_shard_opts.deferral_allowed = background_thread_enabled();
if (pa_shard_enable_hpa(TSDN_NULL, &a0->pa_shard,
&hpa_shard_opts, &opt_hpa_sec_opts)) {
return true;
}
}
malloc_init_state = malloc_init_a0_initialized;
return false;
}
static bool
malloc_init_hard_a0(void) {
bool ret;
malloc_mutex_lock(TSDN_NULL, &init_lock);
ret = malloc_init_hard_a0_locked();
malloc_mutex_unlock(TSDN_NULL, &init_lock);
return ret;
}
/* Initialize data structures which may trigger recursive allocation. */
static bool
malloc_init_hard_recursible(void) {
malloc_init_state = malloc_init_recursible;
ncpus = malloc_ncpus();
#if (defined(JEMALLOC_HAVE_PTHREAD_ATFORK) && !defined(JEMALLOC_MUTEX_INIT_CB) \
&& !defined(JEMALLOC_ZONE) && !defined(_WIN32) && \
!defined(__native_client__))
/* LinuxThreads' pthread_atfork() allocates. */
if (pthread_atfork(jemalloc_prefork, jemalloc_postfork_parent,
jemalloc_postfork_child) != 0) {
malloc_write("<jemalloc>: Error in pthread_atfork()\n");
if (opt_abort) {
abort();
}
return true;
}
#endif
if (background_thread_boot0()) {
return true;
}
return false;
}
static unsigned
malloc_narenas_default(void) {
assert(ncpus > 0);
/*
* For SMP systems, create more than one arena per CPU by
* default.
*/
if (ncpus > 1) {
fxp_t fxp_ncpus = FXP_INIT_INT(ncpus);
fxp_t goal = fxp_mul(fxp_ncpus, opt_narenas_ratio);
uint32_t int_goal = fxp_round_nearest(goal);
if (int_goal == 0) {
return 1;
}
return int_goal;
} else {
return 1;
}
}
static percpu_arena_mode_t
percpu_arena_as_initialized(percpu_arena_mode_t mode) {
assert(!malloc_initialized());
assert(mode <= percpu_arena_disabled);
if (mode != percpu_arena_disabled) {
mode += percpu_arena_mode_enabled_base;
}
return mode;
}
static bool
malloc_init_narenas(void) {
assert(ncpus > 0);
if (opt_percpu_arena != percpu_arena_disabled) {
if (!have_percpu_arena || malloc_getcpu() < 0) {
opt_percpu_arena = percpu_arena_disabled;
malloc_printf("<jemalloc>: perCPU arena getcpu() not "
"available. Setting narenas to %u.\n", opt_narenas ?
opt_narenas : malloc_narenas_default());
if (opt_abort) {
abort();
}
} else {
if (ncpus >= MALLOCX_ARENA_LIMIT) {
malloc_printf("<jemalloc>: narenas w/ percpu"
"arena beyond limit (%d)\n", ncpus);
if (opt_abort) {
abort();
}
return true;
}
/* NB: opt_percpu_arena isn't fully initialized yet. */
if (percpu_arena_as_initialized(opt_percpu_arena) ==
per_phycpu_arena && ncpus % 2 != 0) {
malloc_printf("<jemalloc>: invalid "
"configuration -- per physical CPU arena "
"with odd number (%u) of CPUs (no hyper "
"threading?).\n", ncpus);
if (opt_abort)
abort();
}
unsigned n = percpu_arena_ind_limit(
percpu_arena_as_initialized(opt_percpu_arena));
if (opt_narenas < n) {
/*
* If narenas is specified with percpu_arena
* enabled, actual narenas is set as the greater
* of the two. percpu_arena_choose will be free
* to use any of the arenas based on CPU
* id. This is conservative (at a small cost)
* but ensures correctness.
*
* If for some reason the ncpus determined at
* boot is not the actual number (e.g. because
* of affinity setting from numactl), reserving
* narenas this way provides a workaround for
* percpu_arena.
*/
opt_narenas = n;
}
}
}
if (opt_narenas == 0) {
opt_narenas = malloc_narenas_default();
}
assert(opt_narenas > 0);
narenas_auto = opt_narenas;
/*
* Limit the number of arenas to the indexing range of MALLOCX_ARENA().
*/
if (narenas_auto >= MALLOCX_ARENA_LIMIT) {
narenas_auto = MALLOCX_ARENA_LIMIT - 1;
malloc_printf("<jemalloc>: Reducing narenas to limit (%d)\n",
narenas_auto);
}
narenas_total_set(narenas_auto);
if (arena_init_huge()) {
narenas_total_inc();
}
manual_arena_base = narenas_total_get();
return false;
}
static void
malloc_init_percpu(void) {
opt_percpu_arena = percpu_arena_as_initialized(opt_percpu_arena);
}
static bool
malloc_init_hard_finish(void) {
if (malloc_mutex_boot()) {
return true;
}
malloc_init_state = malloc_init_initialized;
malloc_slow_flag_init();
return false;
}
static void
malloc_init_hard_cleanup(tsdn_t *tsdn, bool reentrancy_set) {
malloc_mutex_assert_owner(tsdn, &init_lock);
malloc_mutex_unlock(tsdn, &init_lock);
if (reentrancy_set) {
assert(!tsdn_null(tsdn));
tsd_t *tsd = tsdn_tsd(tsdn);
assert(tsd_reentrancy_level_get(tsd) > 0);
post_reentrancy(tsd);
}
}
static bool
malloc_init_hard(void) {
tsd_t *tsd;
#if defined(_WIN32) && _WIN32_WINNT < 0x0600
_init_init_lock();
#endif
malloc_mutex_lock(TSDN_NULL, &init_lock);
#define UNLOCK_RETURN(tsdn, ret, reentrancy) \
malloc_init_hard_cleanup(tsdn, reentrancy); \
return ret;
if (!malloc_init_hard_needed()) {
UNLOCK_RETURN(TSDN_NULL, false, false)
}
if (malloc_init_state != malloc_init_a0_initialized &&
malloc_init_hard_a0_locked()) {
UNLOCK_RETURN(TSDN_NULL, true, false)
}
malloc_mutex_unlock(TSDN_NULL, &init_lock);
/* Recursive allocation relies on functional tsd. */
tsd = malloc_tsd_boot0();
if (tsd == NULL) {
return true;
}
if (malloc_init_hard_recursible()) {
return true;
}
malloc_mutex_lock(tsd_tsdn(tsd), &init_lock);
/* Set reentrancy level to 1 during init. */
pre_reentrancy(tsd, NULL);
/* Initialize narenas before prof_boot2 (for allocation). */
if (malloc_init_narenas()
|| background_thread_boot1(tsd_tsdn(tsd), b0get())) {
UNLOCK_RETURN(tsd_tsdn(tsd), true, true)
}
if (config_prof && prof_boot2(tsd, b0get())) {
UNLOCK_RETURN(tsd_tsdn(tsd), true, true)
}
malloc_init_percpu();
if (malloc_init_hard_finish()) {
UNLOCK_RETURN(tsd_tsdn(tsd), true, true)
}
post_reentrancy(tsd);
malloc_mutex_unlock(tsd_tsdn(tsd), &init_lock);
witness_assert_lockless(witness_tsd_tsdn(
tsd_witness_tsdp_get_unsafe(tsd)));
malloc_tsd_boot1();
/* Update TSD after tsd_boot1. */
tsd = tsd_fetch();
if (opt_background_thread) {
assert(have_background_thread);
/*
* Need to finish init & unlock first before creating background
* threads (pthread_create depends on malloc). ctl_init (which
* sets isthreaded) needs to be called without holding any lock.
*/
background_thread_ctl_init(tsd_tsdn(tsd));
if (background_thread_create(tsd, 0)) {
return true;
}
}
#undef UNLOCK_RETURN
return false;
}
/*
* End initialization functions.
*/
/******************************************************************************/
/*
* Begin allocation-path internal functions and data structures.
*/
/*
* Settings determined by the documented behavior of the allocation functions.
*/
typedef struct static_opts_s static_opts_t;
struct static_opts_s {
/* Whether or not allocation size may overflow. */
bool may_overflow;
/*
* Whether or not allocations (with alignment) of size 0 should be
* treated as size 1.
*/
bool bump_empty_aligned_alloc;
/*
* Whether to assert that allocations are not of size 0 (after any
* bumping).
*/
bool assert_nonempty_alloc;
/*
* Whether or not to modify the 'result' argument to malloc in case of
* error.
*/
bool null_out_result_on_error;
/* Whether to set errno when we encounter an error condition. */
bool set_errno_on_error;
/*
* The minimum valid alignment for functions requesting aligned storage.
*/
size_t min_alignment;
/* The error string to use if we oom. */
const char *oom_string;
/* The error string to use if the passed-in alignment is invalid. */
const char *invalid_alignment_string;
/*
* False if we're configured to skip some time-consuming operations.
*
* This isn't really a malloc "behavior", but it acts as a useful
* summary of several other static (or at least, static after program
* initialization) options.
*/
bool slow;
/*
* Return size.
*/
bool usize;
};
JEMALLOC_ALWAYS_INLINE void
static_opts_init(static_opts_t *static_opts) {
static_opts->may_overflow = false;
static_opts->bump_empty_aligned_alloc = false;
static_opts->assert_nonempty_alloc = false;
static_opts->null_out_result_on_error = false;
static_opts->set_errno_on_error = false;
static_opts->min_alignment = 0;
static_opts->oom_string = "";
static_opts->invalid_alignment_string = "";
static_opts->slow = false;
static_opts->usize = false;
}
/*
* These correspond to the macros in jemalloc/jemalloc_macros.h. Broadly, we
* should have one constant here per magic value there. Note however that the
* representations need not be related.
*/
#define TCACHE_IND_NONE ((unsigned)-1)
#define TCACHE_IND_AUTOMATIC ((unsigned)-2)
#define ARENA_IND_AUTOMATIC ((unsigned)-1)
typedef struct dynamic_opts_s dynamic_opts_t;
struct dynamic_opts_s {
void **result;
size_t usize;
size_t num_items;
size_t item_size;
size_t alignment;
bool zero;
unsigned tcache_ind;
unsigned arena_ind;
};
JEMALLOC_ALWAYS_INLINE void
dynamic_opts_init(dynamic_opts_t *dynamic_opts) {
dynamic_opts->result = NULL;
dynamic_opts->usize = 0;
dynamic_opts->num_items = 0;
dynamic_opts->item_size = 0;
dynamic_opts->alignment = 0;
dynamic_opts->zero = false;
dynamic_opts->tcache_ind = TCACHE_IND_AUTOMATIC;
dynamic_opts->arena_ind = ARENA_IND_AUTOMATIC;
}
/*
* ind parameter is optional and is only checked and filled if alignment == 0;
* return true if result is out of range.
*/
JEMALLOC_ALWAYS_INLINE bool
aligned_usize_get(size_t size, size_t alignment, size_t *usize, szind_t *ind,
bool bump_empty_aligned_alloc) {
assert(usize != NULL);
if (alignment == 0) {
if (ind != NULL) {
*ind = sz_size2index(size);
if (unlikely(*ind >= SC_NSIZES)) {
return true;
}
*usize = sz_index2size(*ind);
assert(*usize > 0 && *usize <= SC_LARGE_MAXCLASS);
return false;
}
*usize = sz_s2u(size);
} else {
if (bump_empty_aligned_alloc && unlikely(size == 0)) {
size = 1;
}
*usize = sz_sa2u(size, alignment);
}
if (unlikely(*usize == 0 || *usize > SC_LARGE_MAXCLASS)) {
return true;
}
return false;
}
JEMALLOC_ALWAYS_INLINE bool
zero_get(bool guarantee, bool slow) {
if (config_fill && slow && unlikely(opt_zero)) {
return true;
} else {
return guarantee;
}
}
JEMALLOC_ALWAYS_INLINE tcache_t *
tcache_get_from_ind(tsd_t *tsd, unsigned tcache_ind, bool slow, bool is_alloc) {
tcache_t *tcache;
if (tcache_ind == TCACHE_IND_AUTOMATIC) {
if (likely(!slow)) {
/* Getting tcache ptr unconditionally. */
tcache = tsd_tcachep_get(tsd);
assert(tcache == tcache_get(tsd));
} else if (is_alloc ||
likely(tsd_reentrancy_level_get(tsd) == 0)) {
tcache = tcache_get(tsd);
} else {
tcache = NULL;
}
} else {
/*
* Should not specify tcache on deallocation path when being
* reentrant.
*/
assert(is_alloc || tsd_reentrancy_level_get(tsd) == 0 ||
tsd_state_nocleanup(tsd));
if (tcache_ind == TCACHE_IND_NONE) {
tcache = NULL;
} else {
tcache = tcaches_get(tsd, tcache_ind);
}
}
return tcache;
}
/* Return true if a manual arena is specified and arena_get() OOMs. */
JEMALLOC_ALWAYS_INLINE bool
arena_get_from_ind(tsd_t *tsd, unsigned arena_ind, arena_t **arena_p) {
if (arena_ind == ARENA_IND_AUTOMATIC) {
/*
* In case of automatic arena management, we defer arena
* computation until as late as we can, hoping to fill the
* allocation out of the tcache.
*/
*arena_p = NULL;
} else {
*arena_p = arena_get(tsd_tsdn(tsd), arena_ind, true);
if (unlikely(*arena_p == NULL) && arena_ind >= narenas_auto) {
return true;
}
}
return false;
}
/* ind is ignored if dopts->alignment > 0. */
JEMALLOC_ALWAYS_INLINE void *
imalloc_no_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd,
size_t size, size_t usize, szind_t ind) {
/* Fill in the tcache. */
tcache_t *tcache = tcache_get_from_ind(tsd, dopts->tcache_ind,
sopts->slow, /* is_alloc */ true);
/* Fill in the arena. */
arena_t *arena;
if (arena_get_from_ind(tsd, dopts->arena_ind, &arena)) {
return NULL;
}
if (unlikely(dopts->alignment != 0)) {
return ipalloct(tsd_tsdn(tsd), usize, dopts->alignment,
dopts->zero, tcache, arena);
}
return iallocztm(tsd_tsdn(tsd), size, ind, dopts->zero, tcache, false,
arena, sopts->slow);
}
JEMALLOC_ALWAYS_INLINE void *
imalloc_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd,
size_t usize, szind_t ind) {
void *ret;
/*
* For small allocations, sampling bumps the usize. If so, we allocate
* from the ind_large bucket.
*/
szind_t ind_large;
size_t bumped_usize = usize;
dopts->alignment = prof_sample_align(dopts->alignment);
if (usize <= SC_SMALL_MAXCLASS) {
assert(((dopts->alignment == 0) ?
sz_s2u(SC_LARGE_MINCLASS) :
sz_sa2u(SC_LARGE_MINCLASS, dopts->alignment))
== SC_LARGE_MINCLASS);
ind_large = sz_size2index(SC_LARGE_MINCLASS);
bumped_usize = sz_s2u(SC_LARGE_MINCLASS);
ret = imalloc_no_sample(sopts, dopts, tsd, bumped_usize,
bumped_usize, ind_large);
if (unlikely(ret == NULL)) {
return NULL;
}
arena_prof_promote(tsd_tsdn(tsd), ret, usize);
} else {
ret = imalloc_no_sample(sopts, dopts, tsd, usize, usize, ind);
}
assert(prof_sample_aligned(ret));
return ret;
}
/*
* Returns true if the allocation will overflow, and false otherwise. Sets
* *size to the product either way.
*/
JEMALLOC_ALWAYS_INLINE bool
compute_size_with_overflow(bool may_overflow, dynamic_opts_t *dopts,
size_t *size) {
/*
* This function is just num_items * item_size, except that we may have
* to check for overflow.
*/
if (!may_overflow) {
assert(dopts->num_items == 1);
*size = dopts->item_size;
return false;
}
/* A size_t with its high-half bits all set to 1. */
static const size_t high_bits = SIZE_T_MAX << (sizeof(size_t) * 8 / 2);
*size = dopts->item_size * dopts->num_items;
if (unlikely(*size == 0)) {
return (dopts->num_items != 0 && dopts->item_size != 0);
}
/*
* We got a non-zero size, but we don't know if we overflowed to get
* there. To avoid having to do a divide, we'll be clever and note that
* if both A and B can be represented in N/2 bits, then their product
* can be represented in N bits (without the possibility of overflow).
*/
if (likely((high_bits & (dopts->num_items | dopts->item_size)) == 0)) {
return false;
}
if (likely(*size / dopts->item_size == dopts->num_items)) {
return false;
}
return true;
}
JEMALLOC_ALWAYS_INLINE int
imalloc_body(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd) {
/* Where the actual allocated memory will live. */
void *allocation = NULL;
/* Filled in by compute_size_with_overflow below. */
size_t size = 0;
/*
* The zero initialization for ind is actually dead store, in that its
* value is reset before any branch on its value is taken. Sometimes
* though, it's convenient to pass it as arguments before this point.
* To avoid undefined behavior then, we initialize it with dummy stores.
*/
szind_t ind = 0;
/* usize will always be properly initialized. */
size_t usize;
/* Reentrancy is only checked on slow path. */
int8_t reentrancy_level;
/* Compute the amount of memory the user wants. */
if (unlikely(compute_size_with_overflow(sopts->may_overflow, dopts,
&size))) {
goto label_oom;
}
if (unlikely(dopts->alignment < sopts->min_alignment
|| (dopts->alignment & (dopts->alignment - 1)) != 0)) {
goto label_invalid_alignment;
}
/* This is the beginning of the "core" algorithm. */
dopts->zero = zero_get(dopts->zero, sopts->slow);
if (aligned_usize_get(size, dopts->alignment, &usize, &ind,
sopts->bump_empty_aligned_alloc)) {
goto label_oom;
}
dopts->usize = usize;
/* Validate the user input. */
if (sopts->assert_nonempty_alloc) {
assert (size != 0);
}
check_entry_exit_locking(tsd_tsdn(tsd));
/*
* If we need to handle reentrancy, we can do it out of a
* known-initialized arena (i.e. arena 0).
*/
reentrancy_level = tsd_reentrancy_level_get(tsd);
if (sopts->slow && unlikely(reentrancy_level > 0)) {
/*
* We should never specify particular arenas or tcaches from
* within our internal allocations.
*/
assert(dopts->tcache_ind == TCACHE_IND_AUTOMATIC ||
dopts->tcache_ind == TCACHE_IND_NONE);
assert(dopts->arena_ind == ARENA_IND_AUTOMATIC);
dopts->tcache_ind = TCACHE_IND_NONE;
/* We know that arena 0 has already been initialized. */
dopts->arena_ind = 0;
}
/*
* If dopts->alignment > 0, then ind is still 0, but usize was computed
* in the previous if statement. Down the positive alignment path,
* imalloc_no_sample and imalloc_sample will ignore ind.
*/
/* If profiling is on, get our profiling context. */
if (config_prof && opt_prof) {
bool prof_active = prof_active_get_unlocked();
bool sample_event = te_prof_sample_event_lookahead(tsd, usize);
prof_tctx_t *tctx = prof_alloc_prep(tsd, prof_active,
sample_event);
emap_alloc_ctx_t alloc_ctx;
if (likely((uintptr_t)tctx == (uintptr_t)1U)) {
alloc_ctx.slab = (usize <= SC_SMALL_MAXCLASS);
allocation = imalloc_no_sample(
sopts, dopts, tsd, usize, usize, ind);
} else if ((uintptr_t)tctx > (uintptr_t)1U) {
allocation = imalloc_sample(
sopts, dopts, tsd, usize, ind);
alloc_ctx.slab = false;
} else {
allocation = NULL;
}
if (unlikely(allocation == NULL)) {
prof_alloc_rollback(tsd, tctx);
goto label_oom;
}
prof_malloc(tsd, allocation, size, usize, &alloc_ctx, tctx);
} else {
assert(!opt_prof);
allocation = imalloc_no_sample(sopts, dopts, tsd, size, usize,
ind);
if (unlikely(allocation == NULL)) {
goto label_oom;
}
}
/*
* Allocation has been done at this point. We still have some
* post-allocation work to do though.
*/
thread_alloc_event(tsd, usize);
assert(dopts->alignment == 0
|| ((uintptr_t)allocation & (dopts->alignment - 1)) == ZU(0));
assert(usize == isalloc(tsd_tsdn(tsd), allocation));
if (config_fill && sopts->slow && !dopts->zero
&& unlikely(opt_junk_alloc)) {
junk_alloc_callback(allocation, usize);
}
if (sopts->slow) {
UTRACE(0, size, allocation);
}
/* Success! */
check_entry_exit_locking(tsd_tsdn(tsd));
*dopts->result = allocation;
return 0;
label_oom:
if (unlikely(sopts->slow) && config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write(sopts->oom_string);
abort();
}
if (sopts->slow) {
UTRACE(NULL, size, NULL);
}
check_entry_exit_locking(tsd_tsdn(tsd));
if (sopts->set_errno_on_error) {
set_errno(ENOMEM);
}
if (sopts->null_out_result_on_error) {
*dopts->result = NULL;
}
return ENOMEM;
/*
* This label is only jumped to by one goto; we move it out of line
* anyways to avoid obscuring the non-error paths, and for symmetry with
* the oom case.
*/
label_invalid_alignment:
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write(sopts->invalid_alignment_string);
abort();
}
if (sopts->set_errno_on_error) {
set_errno(EINVAL);
}
if (sopts->slow) {
UTRACE(NULL, size, NULL);
}
check_entry_exit_locking(tsd_tsdn(tsd));
if (sopts->null_out_result_on_error) {
*dopts->result = NULL;
}
return EINVAL;
}
JEMALLOC_ALWAYS_INLINE bool
imalloc_init_check(static_opts_t *sopts, dynamic_opts_t *dopts) {
if (unlikely(!malloc_initialized()) && unlikely(malloc_init())) {
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write(sopts->oom_string);
abort();
}
UTRACE(NULL, dopts->num_items * dopts->item_size, NULL);
set_errno(ENOMEM);
*dopts->result = NULL;
return false;
}
return true;
}
/* Returns the errno-style error code of the allocation. */
JEMALLOC_ALWAYS_INLINE int
imalloc(static_opts_t *sopts, dynamic_opts_t *dopts) {
if (tsd_get_allocates() && !imalloc_init_check(sopts, dopts)) {
return ENOMEM;
}
/* We always need the tsd. Let's grab it right away. */
tsd_t *tsd = tsd_fetch();
assert(tsd);
if (likely(tsd_fast(tsd))) {
/* Fast and common path. */
tsd_assert_fast(tsd);
sopts->slow = false;
return imalloc_body(sopts, dopts, tsd);
} else {
if (!tsd_get_allocates() && !imalloc_init_check(sopts, dopts)) {
return ENOMEM;
}
sopts->slow = true;
return imalloc_body(sopts, dopts, tsd);
}
}
JEMALLOC_NOINLINE
void *
malloc_default(size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
/*
* This variant has logging hook on exit but not on entry. It's callled
* only by je_malloc, below, which emits the entry one for us (and, if
* it calls us, does so only via tail call).
*/
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.null_out_result_on_error = true;
sopts.set_errno_on_error = true;
sopts.oom_string = "<jemalloc>: Error in malloc(): out of memory\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
imalloc(&sopts, &dopts);
/*
* Note that this branch gets optimized away -- it immediately follows
* the check on tsd_fast that sets sopts.slow.
*/
if (sopts.slow) {
uintptr_t args[3] = {size};
hook_invoke_alloc(hook_alloc_malloc, ret, (uintptr_t)ret, args);
}
LOG("core.malloc.exit", "result: %p", ret);
return ret;
}
/******************************************************************************/
/*
* Begin malloc(3)-compatible functions.
*/
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1)
je_malloc(size_t size) {
return imalloc_fastpath(size, &malloc_default);
}
JEMALLOC_EXPORT int JEMALLOC_NOTHROW
JEMALLOC_ATTR(nonnull(1))
je_posix_memalign(void **memptr, size_t alignment, size_t size) {
int ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.posix_memalign.entry", "mem ptr: %p, alignment: %zu, "
"size: %zu", memptr, alignment, size);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_aligned_alloc = true;
sopts.min_alignment = sizeof(void *);
sopts.oom_string =
"<jemalloc>: Error allocating aligned memory: out of memory\n";
sopts.invalid_alignment_string =
"<jemalloc>: Error allocating aligned memory: invalid alignment\n";
dopts.result = memptr;
dopts.num_items = 1;
dopts.item_size = size;
dopts.alignment = alignment;
ret = imalloc(&sopts, &dopts);
if (sopts.slow) {
uintptr_t args[3] = {(uintptr_t)memptr, (uintptr_t)alignment,
(uintptr_t)size};
hook_invoke_alloc(hook_alloc_posix_memalign, *memptr,
(uintptr_t)ret, args);
}
LOG("core.posix_memalign.exit", "result: %d, alloc ptr: %p", ret,
*memptr);
return ret;
}
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(2)
je_aligned_alloc(size_t alignment, size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.aligned_alloc.entry", "alignment: %zu, size: %zu\n",
alignment, size);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_aligned_alloc = true;
sopts.null_out_result_on_error = true;
sopts.set_errno_on_error = true;
sopts.min_alignment = 1;
sopts.oom_string =
"<jemalloc>: Error allocating aligned memory: out of memory\n";
sopts.invalid_alignment_string =
"<jemalloc>: Error allocating aligned memory: invalid alignment\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
dopts.alignment = alignment;
imalloc(&sopts, &dopts);
if (sopts.slow) {
uintptr_t args[3] = {(uintptr_t)alignment, (uintptr_t)size};
hook_invoke_alloc(hook_alloc_aligned_alloc, ret,
(uintptr_t)ret, args);
}
LOG("core.aligned_alloc.exit", "result: %p", ret);
return ret;
}
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE2(1, 2)
je_calloc(size_t num, size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.calloc.entry", "num: %zu, size: %zu\n", num, size);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.may_overflow = true;
sopts.null_out_result_on_error = true;
sopts.set_errno_on_error = true;
sopts.oom_string = "<jemalloc>: Error in calloc(): out of memory\n";
dopts.result = &ret;
dopts.num_items = num;
dopts.item_size = size;
dopts.zero = true;
imalloc(&sopts, &dopts);
if (sopts.slow) {
uintptr_t args[3] = {(uintptr_t)num, (uintptr_t)size};
hook_invoke_alloc(hook_alloc_calloc, ret, (uintptr_t)ret, args);
}
LOG("core.calloc.exit", "result: %p", ret);
return ret;
}
JEMALLOC_ALWAYS_INLINE void
ifree(tsd_t *tsd, void *ptr, tcache_t *tcache, bool slow_path) {
if (!slow_path) {
tsd_assert_fast(tsd);
}
check_entry_exit_locking(tsd_tsdn(tsd));
if (tsd_reentrancy_level_get(tsd) != 0) {
assert(slow_path);
}
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
emap_alloc_ctx_t alloc_ctx;
emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr,
&alloc_ctx);
assert(alloc_ctx.szind != SC_NSIZES);
size_t usize = sz_index2size(alloc_ctx.szind);
if (config_prof && opt_prof) {
prof_free(tsd, ptr, usize, &alloc_ctx);
}
if (likely(!slow_path)) {
idalloctm(tsd_tsdn(tsd), ptr, tcache, &alloc_ctx, false,
false);
} else {
if (config_fill && slow_path && opt_junk_free) {
junk_free_callback(ptr, usize);
}
idalloctm(tsd_tsdn(tsd), ptr, tcache, &alloc_ctx, false,
true);
}
thread_dalloc_event(tsd, usize);
}
JEMALLOC_ALWAYS_INLINE bool
maybe_check_alloc_ctx(tsd_t *tsd, void *ptr, emap_alloc_ctx_t *alloc_ctx) {
if (config_opt_size_checks) {
emap_alloc_ctx_t dbg_ctx;
emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr,
&dbg_ctx);
if (alloc_ctx->szind != dbg_ctx.szind) {
safety_check_fail_sized_dealloc(
/* current_dealloc */ true, ptr,
/* true_size */ sz_size2index(dbg_ctx.szind),
/* input_size */ sz_size2index(alloc_ctx->szind));
return true;
}
if (alloc_ctx->slab != dbg_ctx.slab) {
safety_check_fail(
"Internal heap corruption detected: "
"mismatch in slab bit");
return true;
}
}
return false;
}
JEMALLOC_ALWAYS_INLINE void
isfree(tsd_t *tsd, void *ptr, size_t usize, tcache_t *tcache, bool slow_path) {
if (!slow_path) {
tsd_assert_fast(tsd);
}
check_entry_exit_locking(tsd_tsdn(tsd));
if (tsd_reentrancy_level_get(tsd) != 0) {
assert(slow_path);
}
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
emap_alloc_ctx_t alloc_ctx;
if (!config_prof) {
alloc_ctx.szind = sz_size2index(usize);
alloc_ctx.slab = (alloc_ctx.szind < SC_NBINS);
} else {
if (likely(!prof_sample_aligned(ptr))) {
/*
* When the ptr is not page aligned, it was not sampled.
* usize can be trusted to determine szind and slab.
*/
alloc_ctx.szind = sz_size2index(usize);
alloc_ctx.slab = (alloc_ctx.szind < SC_NBINS);
} else if (opt_prof) {
emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global,
ptr, &alloc_ctx);
if (config_opt_safety_checks) {
/* Small alloc may have !slab (sampled). */
if (unlikely(alloc_ctx.szind !=
sz_size2index(usize))) {
safety_check_fail_sized_dealloc(
/* current_dealloc */ true, ptr,
/* true_size */ sz_index2size(
alloc_ctx.szind),
/* input_size */ usize);
}
}
} else {
alloc_ctx.szind = sz_size2index(usize);
alloc_ctx.slab = (alloc_ctx.szind < SC_NBINS);
}
}
bool fail = maybe_check_alloc_ctx(tsd, ptr, &alloc_ctx);
if (fail) {
/*
* This is a heap corruption bug. In real life we'll crash; for
* the unit test we just want to avoid breaking anything too
* badly to get a test result out. Let's leak instead of trying
* to free.
*/
return;
}
if (config_prof && opt_prof) {
prof_free(tsd, ptr, usize, &alloc_ctx);
}
if (likely(!slow_path)) {
isdalloct(tsd_tsdn(tsd), ptr, usize, tcache, &alloc_ctx,
false);
} else {
if (config_fill && slow_path && opt_junk_free) {
junk_free_callback(ptr, usize);
}
isdalloct(tsd_tsdn(tsd), ptr, usize, tcache, &alloc_ctx,
true);
}
thread_dalloc_event(tsd, usize);
}
JEMALLOC_NOINLINE
void
free_default(void *ptr) {
UTRACE(ptr, 0, 0);
if (likely(ptr != NULL)) {
/*
* We avoid setting up tsd fully (e.g. tcache, arena binding)
* based on only free() calls -- other activities trigger the
* minimal to full transition. This is because free() may
* happen during thread shutdown after tls deallocation: if a
* thread never had any malloc activities until then, a
* fully-setup tsd won't be destructed properly.
*/
tsd_t *tsd = tsd_fetch_min();
check_entry_exit_locking(tsd_tsdn(tsd));
if (likely(tsd_fast(tsd))) {
tcache_t *tcache = tcache_get_from_ind(tsd,
TCACHE_IND_AUTOMATIC, /* slow */ false,
/* is_alloc */ false);
ifree(tsd, ptr, tcache, /* slow */ false);
} else {
tcache_t *tcache = tcache_get_from_ind(tsd,
TCACHE_IND_AUTOMATIC, /* slow */ true,
/* is_alloc */ false);
uintptr_t args_raw[3] = {(uintptr_t)ptr};
hook_invoke_dalloc(hook_dalloc_free, ptr, args_raw);
ifree(tsd, ptr, tcache, /* slow */ true);
}
check_entry_exit_locking(tsd_tsdn(tsd));
}
}
/* Returns whether or not the free attempt was successful. */
JEMALLOC_ALWAYS_INLINE
bool free_fastpath(void *ptr, size_t size, bool size_hint) {
tsd_t *tsd = tsd_get(false);
/* The branch gets optimized away unless tsd_get_allocates(). */
if (unlikely(tsd == NULL)) {
return false;
}
/*
* The tsd_fast() / initialized checks are folded into the branch
* testing (deallocated_after >= threshold) later in this function.
* The threshold will be set to 0 when !tsd_fast.
*/
assert(tsd_fast(tsd) ||
*tsd_thread_deallocated_next_event_fastp_get_unsafe(tsd) == 0);
emap_alloc_ctx_t alloc_ctx;
if (!size_hint) {
bool err = emap_alloc_ctx_try_lookup_fast(tsd,
&arena_emap_global, ptr, &alloc_ctx);
/* Note: profiled objects will have alloc_ctx.slab set */
if (unlikely(err || !alloc_ctx.slab)) {
return false;
}
assert(alloc_ctx.szind != SC_NSIZES);
} else {
/*
* Check for both sizes that are too large, and for sampled
* objects. Sampled objects are always page-aligned. The
* sampled object check will also check for null ptr.
*/
if (unlikely(size > SC_LOOKUP_MAXCLASS ||
(config_prof && prof_sample_aligned(ptr)))) {
return false;
}
alloc_ctx.szind = sz_size2index_lookup(size);
/* This is a dead store, except when opt size checking is on. */
alloc_ctx.slab = (alloc_ctx.szind < SC_NBINS);
}
uint64_t deallocated, threshold;
te_free_fastpath_ctx(tsd, &deallocated, &threshold);
size_t usize = sz_index2size(alloc_ctx.szind);
uint64_t deallocated_after = deallocated + usize;
/*
* Check for events and tsd non-nominal (fast_threshold will be set to
* 0) in a single branch. Note that this handles the uninitialized case
* as well (TSD init will be triggered on the non-fastpath). Therefore
* anything depends on a functional TSD (e.g. the alloc_ctx sanity check
* below) needs to be after this branch.
*/
if (unlikely(deallocated_after >= threshold)) {
return false;
}
assert(tsd_fast(tsd));
bool fail = maybe_check_alloc_ctx(tsd, ptr, &alloc_ctx);
if (fail) {
/* See the comment in isfree. */
return true;
}
tcache_t *tcache = tcache_get_from_ind(tsd, TCACHE_IND_AUTOMATIC,
/* slow */ false, /* is_alloc */ false);
cache_bin_t *bin = &tcache->bins[alloc_ctx.szind];
/*
* If junking were enabled, this is where we would do it. It's not
* though, since we ensured above that we're on the fast path. Assert
* that to double-check.
*/
assert(!opt_junk_free);
if (!cache_bin_dalloc_easy(bin, ptr)) {
return false;
}
*tsd_thread_deallocatedp_get(tsd) = deallocated_after;
return true;
}
JEMALLOC_EXPORT void JEMALLOC_NOTHROW
je_free(void *ptr) {
LOG("core.free.entry", "ptr: %p", ptr);
if (!free_fastpath(ptr, 0, false)) {
free_default(ptr);
}
LOG("core.free.exit", "");
}
/*
* End malloc(3)-compatible functions.
*/
/******************************************************************************/
/*
* Begin non-standard override functions.
*/
#ifdef JEMALLOC_OVERRIDE_MEMALIGN
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc)
je_memalign(size_t alignment, size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.memalign.entry", "alignment: %zu, size: %zu\n", alignment,
size);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.min_alignment = 1;
sopts.oom_string =
"<jemalloc>: Error allocating aligned memory: out of memory\n";
sopts.invalid_alignment_string =
"<jemalloc>: Error allocating aligned memory: invalid alignment\n";
sopts.null_out_result_on_error = true;
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
dopts.alignment = alignment;
imalloc(&sopts, &dopts);
if (sopts.slow) {
uintptr_t args[3] = {alignment, size};
hook_invoke_alloc(hook_alloc_memalign, ret, (uintptr_t)ret,
args);
}
LOG("core.memalign.exit", "result: %p", ret);
return ret;
}
#endif
#ifdef JEMALLOC_OVERRIDE_VALLOC
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc)
je_valloc(size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.valloc.entry", "size: %zu\n", size);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.null_out_result_on_error = true;
sopts.min_alignment = PAGE;
sopts.oom_string =
"<jemalloc>: Error allocating aligned memory: out of memory\n";
sopts.invalid_alignment_string =
"<jemalloc>: Error allocating aligned memory: invalid alignment\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
dopts.alignment = PAGE;
imalloc(&sopts, &dopts);
if (sopts.slow) {
uintptr_t args[3] = {size};
hook_invoke_alloc(hook_alloc_valloc, ret, (uintptr_t)ret, args);
}
LOG("core.valloc.exit", "result: %p\n", ret);
return ret;
}
#endif
#if defined(JEMALLOC_IS_MALLOC) && defined(JEMALLOC_GLIBC_MALLOC_HOOK)
/*
* glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
* to inconsistently reference libc's malloc(3)-compatible functions
* (https://bugzilla.mozilla.org/show_bug.cgi?id=493541).
*
* These definitions interpose hooks in glibc. The functions are actually
* passed an extra argument for the caller return address, which will be
* ignored.
*/
JEMALLOC_EXPORT void (*__free_hook)(void *ptr) = je_free;
JEMALLOC_EXPORT void *(*__malloc_hook)(size_t size) = je_malloc;
JEMALLOC_EXPORT void *(*__realloc_hook)(void *ptr, size_t size) = je_realloc;
# ifdef JEMALLOC_GLIBC_MEMALIGN_HOOK
JEMALLOC_EXPORT void *(*__memalign_hook)(size_t alignment, size_t size) =
je_memalign;
# endif
# ifdef CPU_COUNT
/*
* To enable static linking with glibc, the libc specific malloc interface must
* be implemented also, so none of glibc's malloc.o functions are added to the
* link.
*/
# define ALIAS(je_fn) __attribute__((alias (#je_fn), used))
/* To force macro expansion of je_ prefix before stringification. */
# define PREALIAS(je_fn) ALIAS(je_fn)
# ifdef JEMALLOC_OVERRIDE___LIBC_CALLOC
void *__libc_calloc(size_t n, size_t size) PREALIAS(je_calloc);
# endif
# ifdef JEMALLOC_OVERRIDE___LIBC_FREE
void __libc_free(void* ptr) PREALIAS(je_free);
# endif
# ifdef JEMALLOC_OVERRIDE___LIBC_MALLOC
void *__libc_malloc(size_t size) PREALIAS(je_malloc);
# endif
# ifdef JEMALLOC_OVERRIDE___LIBC_MEMALIGN
void *__libc_memalign(size_t align, size_t s) PREALIAS(je_memalign);
# endif
# ifdef JEMALLOC_OVERRIDE___LIBC_REALLOC
void *__libc_realloc(void* ptr, size_t size) PREALIAS(je_realloc);
# endif
# ifdef JEMALLOC_OVERRIDE___LIBC_VALLOC
void *__libc_valloc(size_t size) PREALIAS(je_valloc);
# endif
# ifdef JEMALLOC_OVERRIDE___POSIX_MEMALIGN
int __posix_memalign(void** r, size_t a, size_t s) PREALIAS(je_posix_memalign);
# endif
# undef PREALIAS
# undef ALIAS
# endif
#endif
/*
* End non-standard override functions.
*/
/******************************************************************************/
/*
* Begin non-standard functions.
*/
JEMALLOC_ALWAYS_INLINE unsigned
mallocx_tcache_get(int flags) {
if (likely((flags & MALLOCX_TCACHE_MASK) == 0)) {
return TCACHE_IND_AUTOMATIC;
} else if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) {
return TCACHE_IND_NONE;
} else {
return MALLOCX_TCACHE_GET(flags);
}
}
JEMALLOC_ALWAYS_INLINE unsigned
mallocx_arena_get(int flags) {
if (unlikely((flags & MALLOCX_ARENA_MASK) != 0)) {
return MALLOCX_ARENA_GET(flags);
} else {
return ARENA_IND_AUTOMATIC;
}
}
#ifdef JEMALLOC_EXPERIMENTAL_SMALLOCX_API
#define JEMALLOC_SMALLOCX_CONCAT_HELPER(x, y) x ## y
#define JEMALLOC_SMALLOCX_CONCAT_HELPER2(x, y) \
JEMALLOC_SMALLOCX_CONCAT_HELPER(x, y)
typedef struct {
void *ptr;
size_t size;
} smallocx_return_t;
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
smallocx_return_t JEMALLOC_NOTHROW
/*
* The attribute JEMALLOC_ATTR(malloc) cannot be used due to:
* - https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86488
*/
JEMALLOC_SMALLOCX_CONCAT_HELPER2(je_smallocx_, JEMALLOC_VERSION_GID_IDENT)
(size_t size, int flags) {
/*
* Note: the attribute JEMALLOC_ALLOC_SIZE(1) cannot be
* used here because it makes writing beyond the `size`
* of the `ptr` undefined behavior, but the objective
* of this function is to allow writing beyond `size`
* up to `smallocx_return_t::size`.
*/
smallocx_return_t ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.smallocx.entry", "size: %zu, flags: %d", size, flags);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.assert_nonempty_alloc = true;
sopts.null_out_result_on_error = true;
sopts.oom_string = "<jemalloc>: Error in mallocx(): out of memory\n";
sopts.usize = true;
dopts.result = &ret.ptr;
dopts.num_items = 1;
dopts.item_size = size;
if (unlikely(flags != 0)) {
dopts.alignment = MALLOCX_ALIGN_GET(flags);
dopts.zero = MALLOCX_ZERO_GET(flags);
dopts.tcache_ind = mallocx_tcache_get(flags);
dopts.arena_ind = mallocx_arena_get(flags);
}
imalloc(&sopts, &dopts);
assert(dopts.usize == je_nallocx(size, flags));
ret.size = dopts.usize;
LOG("core.smallocx.exit", "result: %p, size: %zu", ret.ptr, ret.size);
return ret;
}
#undef JEMALLOC_SMALLOCX_CONCAT_HELPER
#undef JEMALLOC_SMALLOCX_CONCAT_HELPER2
#endif
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1)
je_mallocx(size_t size, int flags) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.mallocx.entry", "size: %zu, flags: %d", size, flags);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.assert_nonempty_alloc = true;
sopts.null_out_result_on_error = true;
sopts.oom_string = "<jemalloc>: Error in mallocx(): out of memory\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
if (unlikely(flags != 0)) {
dopts.alignment = MALLOCX_ALIGN_GET(flags);
dopts.zero = MALLOCX_ZERO_GET(flags);
dopts.tcache_ind = mallocx_tcache_get(flags);
dopts.arena_ind = mallocx_arena_get(flags);
}
imalloc(&sopts, &dopts);
if (sopts.slow) {
uintptr_t args[3] = {size, flags};
hook_invoke_alloc(hook_alloc_mallocx, ret, (uintptr_t)ret,
args);
}
LOG("core.mallocx.exit", "result: %p", ret);
return ret;
}
static void *
irallocx_prof_sample(tsdn_t *tsdn, void *old_ptr, size_t old_usize,
size_t usize, size_t alignment, bool zero, tcache_t *tcache, arena_t *arena,
prof_tctx_t *tctx, hook_ralloc_args_t *hook_args) {
void *p;
if (tctx == NULL) {
return NULL;
}
alignment = prof_sample_align(alignment);
if (usize <= SC_SMALL_MAXCLASS) {
p = iralloct(tsdn, old_ptr, old_usize,
SC_LARGE_MINCLASS, alignment, zero, tcache,
arena, hook_args);
if (p == NULL) {
return NULL;
}
arena_prof_promote(tsdn, p, usize);
} else {
p = iralloct(tsdn, old_ptr, old_usize, usize, alignment, zero,
tcache, arena, hook_args);
}
assert(prof_sample_aligned(p));
return p;
}
JEMALLOC_ALWAYS_INLINE void *
irallocx_prof(tsd_t *tsd, void *old_ptr, size_t old_usize, size_t size,
size_t alignment, size_t usize, bool zero, tcache_t *tcache,
arena_t *arena, emap_alloc_ctx_t *alloc_ctx,
hook_ralloc_args_t *hook_args) {
prof_info_t old_prof_info;
prof_info_get_and_reset_recent(tsd, old_ptr, alloc_ctx, &old_prof_info);
bool prof_active = prof_active_get_unlocked();
bool sample_event = te_prof_sample_event_lookahead(tsd, usize);
prof_tctx_t *tctx = prof_alloc_prep(tsd, prof_active, sample_event);
void *p;
if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
p = irallocx_prof_sample(tsd_tsdn(tsd), old_ptr, old_usize,
usize, alignment, zero, tcache, arena, tctx, hook_args);
} else {
p = iralloct(tsd_tsdn(tsd), old_ptr, old_usize, size, alignment,
zero, tcache, arena, hook_args);
}
if (unlikely(p == NULL)) {
prof_alloc_rollback(tsd, tctx);
return NULL;
}
assert(usize == isalloc(tsd_tsdn(tsd), p));
prof_realloc(tsd, p, size, usize, tctx, prof_active, old_ptr,
old_usize, &old_prof_info, sample_event);
return p;
}
static void *
do_rallocx(void *ptr, size_t size, int flags, bool is_realloc) {
void *p;
tsd_t *tsd;
size_t usize;
size_t old_usize;
size_t alignment = MALLOCX_ALIGN_GET(flags);
arena_t *arena;
assert(ptr != NULL);
assert(size != 0);
assert(malloc_initialized() || IS_INITIALIZER);
tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
bool zero = zero_get(MALLOCX_ZERO_GET(flags), /* slow */ true);
unsigned arena_ind = mallocx_arena_get(flags);
if (arena_get_from_ind(tsd, arena_ind, &arena)) {
goto label_oom;
}
unsigned tcache_ind = mallocx_tcache_get(flags);
tcache_t *tcache = tcache_get_from_ind(tsd, tcache_ind,
/* slow */ true, /* is_alloc */ true);
emap_alloc_ctx_t alloc_ctx;
emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr,
&alloc_ctx);
assert(alloc_ctx.szind != SC_NSIZES);
old_usize = sz_index2size(alloc_ctx.szind);
assert(old_usize == isalloc(tsd_tsdn(tsd), ptr));
if (aligned_usize_get(size, alignment, &usize, NULL, false)) {
goto label_oom;
}
hook_ralloc_args_t hook_args = {is_realloc, {(uintptr_t)ptr, size,
flags, 0}};
if (config_prof && opt_prof) {
p = irallocx_prof(tsd, ptr, old_usize, size, alignment, usize,
zero, tcache, arena, &alloc_ctx, &hook_args);
if (unlikely(p == NULL)) {
goto label_oom;
}
} else {
p = iralloct(tsd_tsdn(tsd), ptr, old_usize, size, alignment,
zero, tcache, arena, &hook_args);
if (unlikely(p == NULL)) {
goto label_oom;
}
assert(usize == isalloc(tsd_tsdn(tsd), p));
}
assert(alignment == 0 || ((uintptr_t)p & (alignment - 1)) == ZU(0));
thread_alloc_event(tsd, usize);
thread_dalloc_event(tsd, old_usize);
UTRACE(ptr, size, p);
check_entry_exit_locking(tsd_tsdn(tsd));
if (config_fill && unlikely(opt_junk_alloc) && usize > old_usize
&& !zero) {
size_t excess_len = usize - old_usize;
void *excess_start = (void *)((uintptr_t)p + old_usize);
junk_alloc_callback(excess_start, excess_len);
}
return p;
label_oom:
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write("<jemalloc>: Error in rallocx(): out of memory\n");
abort();
}
UTRACE(ptr, size, 0);
check_entry_exit_locking(tsd_tsdn(tsd));
return NULL;
}
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ALLOC_SIZE(2)
je_rallocx(void *ptr, size_t size, int flags) {
LOG("core.rallocx.entry", "ptr: %p, size: %zu, flags: %d", ptr,
size, flags);
void *ret = do_rallocx(ptr, size, flags, false);
LOG("core.rallocx.exit", "result: %p", ret);
return ret;
}
static void *
do_realloc_nonnull_zero(void *ptr) {
if (config_stats) {
atomic_fetch_add_zu(&zero_realloc_count, 1, ATOMIC_RELAXED);
}
if (opt_zero_realloc_action == zero_realloc_action_strict) {
/*
* The user might have gotten a strict setting while expecting a
* free setting. If that's the case, we at least try to
* reduce the harm, and turn off the tcache while allocating, so
* that we'll get a true first fit.
*/
return do_rallocx(ptr, 1, MALLOCX_TCACHE_NONE, true);
} else if (opt_zero_realloc_action == zero_realloc_action_free) {
UTRACE(ptr, 0, 0);
tsd_t *tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
tcache_t *tcache = tcache_get_from_ind(tsd,
TCACHE_IND_AUTOMATIC, /* slow */ true,
/* is_alloc */ false);
uintptr_t args[3] = {(uintptr_t)ptr, 0};
hook_invoke_dalloc(hook_dalloc_realloc, ptr, args);
ifree(tsd, ptr, tcache, true);
check_entry_exit_locking(tsd_tsdn(tsd));
return NULL;
} else {
safety_check_fail("Called realloc(non-null-ptr, 0) with "
"zero_realloc:abort set\n");
/* In real code, this will never run; the safety check failure
* will call abort. In the unit test, we just want to bail out
* without corrupting internal state that the test needs to
* finish.
*/
return NULL;
}
}
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ALLOC_SIZE(2)
je_realloc(void *ptr, size_t size) {
LOG("core.realloc.entry", "ptr: %p, size: %zu\n", ptr, size);
if (likely(ptr != NULL && size != 0)) {
void *ret = do_rallocx(ptr, size, 0, true);
LOG("core.realloc.exit", "result: %p", ret);
return ret;
} else if (ptr != NULL && size == 0) {
void *ret = do_realloc_nonnull_zero(ptr);
LOG("core.realloc.exit", "result: %p", ret);
return ret;
} else {
/* realloc(NULL, size) is equivalent to malloc(size). */
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.null_out_result_on_error = true;
sopts.set_errno_on_error = true;
sopts.oom_string =
"<jemalloc>: Error in realloc(): out of memory\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
imalloc(&sopts, &dopts);
if (sopts.slow) {
uintptr_t args[3] = {(uintptr_t)ptr, size};
hook_invoke_alloc(hook_alloc_realloc, ret,
(uintptr_t)ret, args);
}
LOG("core.realloc.exit", "result: %p", ret);
return ret;
}
}
JEMALLOC_ALWAYS_INLINE size_t
ixallocx_helper(tsdn_t *tsdn, void *ptr, size_t old_usize, size_t size,
size_t extra, size_t alignment, bool zero) {
size_t newsize;
if (ixalloc(tsdn, ptr, old_usize, size, extra, alignment, zero,
&newsize)) {
return old_usize;
}
return newsize;
}
static size_t
ixallocx_prof_sample(tsdn_t *tsdn, void *ptr, size_t old_usize, size_t size,
size_t extra, size_t alignment, bool zero, prof_tctx_t *tctx) {
/* Sampled allocation needs to be page aligned. */
if (tctx == NULL || !prof_sample_aligned(ptr)) {
return old_usize;
}
return ixallocx_helper(tsdn, ptr, old_usize, size, extra, alignment,
zero);
}
JEMALLOC_ALWAYS_INLINE size_t
ixallocx_prof(tsd_t *tsd, void *ptr, size_t old_usize, size_t size,
size_t extra, size_t alignment, bool zero, emap_alloc_ctx_t *alloc_ctx) {
/*
* old_prof_info is only used for asserting that the profiling info
* isn't changed by the ixalloc() call.
*/
prof_info_t old_prof_info;
prof_info_get(tsd, ptr, alloc_ctx, &old_prof_info);
/*
* usize isn't knowable before ixalloc() returns when extra is non-zero.
* Therefore, compute its maximum possible value and use that in
* prof_alloc_prep() to decide whether to capture a backtrace.
* prof_realloc() will use the actual usize to decide whether to sample.
*/
size_t usize_max;
if (aligned_usize_get(size + extra, alignment, &usize_max, NULL,
false)) {
/*
* usize_max is out of range, and chances are that allocation
* will fail, but use the maximum possible value and carry on
* with prof_alloc_prep(), just in case allocation succeeds.
*/
usize_max = SC_LARGE_MAXCLASS;
}
bool prof_active = prof_active_get_unlocked();
bool sample_event = te_prof_sample_event_lookahead(tsd, usize_max);
prof_tctx_t *tctx = prof_alloc_prep(tsd, prof_active, sample_event);
size_t usize;
if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
usize = ixallocx_prof_sample(tsd_tsdn(tsd), ptr, old_usize,
size, extra, alignment, zero, tctx);
} else {
usize = ixallocx_helper(tsd_tsdn(tsd), ptr, old_usize, size,
extra, alignment, zero);
}
/*
* At this point we can still safely get the original profiling
* information associated with the ptr, because (a) the edata_t object
* associated with the ptr still lives and (b) the profiling info
* fields are not touched. "(a)" is asserted in the outer je_xallocx()
* function, and "(b)" is indirectly verified below by checking that
* the alloc_tctx field is unchanged.
*/
prof_info_t prof_info;
if (usize == old_usize) {
prof_info_get(tsd, ptr, alloc_ctx, &prof_info);
prof_alloc_rollback(tsd, tctx);
} else {
prof_info_get_and_reset_recent(tsd, ptr, alloc_ctx, &prof_info);
assert(usize <= usize_max);
sample_event = te_prof_sample_event_lookahead(tsd, usize);
prof_realloc(tsd, ptr, size, usize, tctx, prof_active, ptr,
old_usize, &prof_info, sample_event);
}
assert(old_prof_info.alloc_tctx == prof_info.alloc_tctx);
return usize;
}
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
je_xallocx(void *ptr, size_t size, size_t extra, int flags) {
tsd_t *tsd;
size_t usize, old_usize;
size_t alignment = MALLOCX_ALIGN_GET(flags);
bool zero = zero_get(MALLOCX_ZERO_GET(flags), /* slow */ true);
LOG("core.xallocx.entry", "ptr: %p, size: %zu, extra: %zu, "
"flags: %d", ptr, size, extra, flags);
assert(ptr != NULL);
assert(size != 0);
assert(SIZE_T_MAX - size >= extra);
assert(malloc_initialized() || IS_INITIALIZER);
tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
/*
* old_edata is only for verifying that xallocx() keeps the edata_t
* object associated with the ptr (though the content of the edata_t
* object can be changed).
*/
edata_t *old_edata = emap_edata_lookup(tsd_tsdn(tsd),
&arena_emap_global, ptr);
emap_alloc_ctx_t alloc_ctx;
emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr,
&alloc_ctx);
assert(alloc_ctx.szind != SC_NSIZES);
old_usize = sz_index2size(alloc_ctx.szind);
assert(old_usize == isalloc(tsd_tsdn(tsd), ptr));
/*
* The API explicitly absolves itself of protecting against (size +
* extra) numerical overflow, but we may need to clamp extra to avoid
* exceeding SC_LARGE_MAXCLASS.
*
* Ordinarily, size limit checking is handled deeper down, but here we
* have to check as part of (size + extra) clamping, since we need the
* clamped value in the above helper functions.
*/
if (unlikely(size > SC_LARGE_MAXCLASS)) {
usize = old_usize;
goto label_not_resized;
}
if (unlikely(SC_LARGE_MAXCLASS - size < extra)) {
extra = SC_LARGE_MAXCLASS - size;
}
if (config_prof && opt_prof) {
usize = ixallocx_prof(tsd, ptr, old_usize, size, extra,
alignment, zero, &alloc_ctx);
} else {
usize = ixallocx_helper(tsd_tsdn(tsd), ptr, old_usize, size,
extra, alignment, zero);
}
/*
* xallocx() should keep using the same edata_t object (though its
* content can be changed).
*/
assert(emap_edata_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr)
== old_edata);
if (unlikely(usize == old_usize)) {
goto label_not_resized;
}
thread_alloc_event(tsd, usize);
thread_dalloc_event(tsd, old_usize);
if (config_fill && unlikely(opt_junk_alloc) && usize > old_usize &&
!zero) {
size_t excess_len = usize - old_usize;
void *excess_start = (void *)((uintptr_t)ptr + old_usize);
junk_alloc_callback(excess_start, excess_len);
}
label_not_resized:
if (unlikely(!tsd_fast(tsd))) {
uintptr_t args[4] = {(uintptr_t)ptr, size, extra, flags};
hook_invoke_expand(hook_expand_xallocx, ptr, old_usize,
usize, (uintptr_t)usize, args);
}
UTRACE(ptr, size, ptr);
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.xallocx.exit", "result: %zu", usize);
return usize;
}
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
JEMALLOC_ATTR(pure)
je_sallocx(const void *ptr, int flags) {
size_t usize;
tsdn_t *tsdn;
LOG("core.sallocx.entry", "ptr: %p, flags: %d", ptr, flags);
assert(malloc_initialized() || IS_INITIALIZER);
assert(ptr != NULL);
tsdn = tsdn_fetch();
check_entry_exit_locking(tsdn);
if (config_debug || force_ivsalloc) {
usize = ivsalloc(tsdn, ptr);
assert(force_ivsalloc || usize != 0);
} else {
usize = isalloc(tsdn, ptr);
}
check_entry_exit_locking(tsdn);
LOG("core.sallocx.exit", "result: %zu", usize);
return usize;
}
JEMALLOC_EXPORT void JEMALLOC_NOTHROW
je_dallocx(void *ptr, int flags) {
LOG("core.dallocx.entry", "ptr: %p, flags: %d", ptr, flags);
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
tsd_t *tsd = tsd_fetch_min();
bool fast = tsd_fast(tsd);
check_entry_exit_locking(tsd_tsdn(tsd));
unsigned tcache_ind = mallocx_tcache_get(flags);
tcache_t *tcache = tcache_get_from_ind(tsd, tcache_ind, !fast,
/* is_alloc */ false);
UTRACE(ptr, 0, 0);
if (likely(fast)) {
tsd_assert_fast(tsd);
ifree(tsd, ptr, tcache, false);
} else {
uintptr_t args_raw[3] = {(uintptr_t)ptr, flags};
hook_invoke_dalloc(hook_dalloc_dallocx, ptr, args_raw);
ifree(tsd, ptr, tcache, true);
}
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.dallocx.exit", "");
}
JEMALLOC_ALWAYS_INLINE size_t
inallocx(tsdn_t *tsdn, size_t size, int flags) {
check_entry_exit_locking(tsdn);
size_t usize;
/* In case of out of range, let the user see it rather than fail. */
aligned_usize_get(size, MALLOCX_ALIGN_GET(flags), &usize, NULL, false);
check_entry_exit_locking(tsdn);
return usize;
}
JEMALLOC_NOINLINE void
sdallocx_default(void *ptr, size_t size, int flags) {
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
tsd_t *tsd = tsd_fetch_min();
bool fast = tsd_fast(tsd);
size_t usize = inallocx(tsd_tsdn(tsd), size, flags);
check_entry_exit_locking(tsd_tsdn(tsd));
unsigned tcache_ind = mallocx_tcache_get(flags);
tcache_t *tcache = tcache_get_from_ind(tsd, tcache_ind, !fast,
/* is_alloc */ false);
UTRACE(ptr, 0, 0);
if (likely(fast)) {
tsd_assert_fast(tsd);
isfree(tsd, ptr, usize, tcache, false);
} else {
uintptr_t args_raw[3] = {(uintptr_t)ptr, size, flags};
hook_invoke_dalloc(hook_dalloc_sdallocx, ptr, args_raw);
isfree(tsd, ptr, usize, tcache, true);
}
check_entry_exit_locking(tsd_tsdn(tsd));
}
JEMALLOC_EXPORT void JEMALLOC_NOTHROW
je_sdallocx(void *ptr, size_t size, int flags) {
LOG("core.sdallocx.entry", "ptr: %p, size: %zu, flags: %d", ptr,
size, flags);
if (flags != 0 || !free_fastpath(ptr, size, true)) {
sdallocx_default(ptr, size, flags);
}
LOG("core.sdallocx.exit", "");
}
void JEMALLOC_NOTHROW
je_sdallocx_noflags(void *ptr, size_t size) {
LOG("core.sdallocx.entry", "ptr: %p, size: %zu, flags: 0", ptr,
size);
if (!free_fastpath(ptr, size, true)) {
sdallocx_default(ptr, size, 0);
}
LOG("core.sdallocx.exit", "");
}
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
JEMALLOC_ATTR(pure)
je_nallocx(size_t size, int flags) {
size_t usize;
tsdn_t *tsdn;
assert(size != 0);
if (unlikely(malloc_init())) {
LOG("core.nallocx.exit", "result: %zu", ZU(0));
return 0;
}
tsdn = tsdn_fetch();
check_entry_exit_locking(tsdn);
usize = inallocx(tsdn, size, flags);
if (unlikely(usize > SC_LARGE_MAXCLASS)) {
LOG("core.nallocx.exit", "result: %zu", ZU(0));
return 0;
}
check_entry_exit_locking(tsdn);
LOG("core.nallocx.exit", "result: %zu", usize);
return usize;
}
JEMALLOC_EXPORT int JEMALLOC_NOTHROW
je_mallctl(const char *name, void *oldp, size_t *oldlenp, void *newp,
size_t newlen) {
int ret;
tsd_t *tsd;
LOG("core.mallctl.entry", "name: %s", name);
if (unlikely(malloc_init())) {
LOG("core.mallctl.exit", "result: %d", EAGAIN);
return EAGAIN;
}
tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
ret = ctl_byname(tsd, name, oldp, oldlenp, newp, newlen);
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.mallctl.exit", "result: %d", ret);
return ret;
}
JEMALLOC_EXPORT int JEMALLOC_NOTHROW
je_mallctlnametomib(const char *name, size_t *mibp, size_t *miblenp) {
int ret;
LOG("core.mallctlnametomib.entry", "name: %s", name);
if (unlikely(malloc_init())) {
LOG("core.mallctlnametomib.exit", "result: %d", EAGAIN);
return EAGAIN;
}
tsd_t *tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
ret = ctl_nametomib(tsd, name, mibp, miblenp);
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.mallctlnametomib.exit", "result: %d", ret);
return ret;
}
JEMALLOC_EXPORT int JEMALLOC_NOTHROW
je_mallctlbymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp,
void *newp, size_t newlen) {
int ret;
tsd_t *tsd;
LOG("core.mallctlbymib.entry", "");
if (unlikely(malloc_init())) {
LOG("core.mallctlbymib.exit", "result: %d", EAGAIN);
return EAGAIN;
}
tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
ret = ctl_bymib(tsd, mib, miblen, oldp, oldlenp, newp, newlen);
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.mallctlbymib.exit", "result: %d", ret);
return ret;
}
#define STATS_PRINT_BUFSIZE 65536
JEMALLOC_EXPORT void JEMALLOC_NOTHROW
je_malloc_stats_print(void (*write_cb)(void *, const char *), void *cbopaque,
const char *opts) {
tsdn_t *tsdn;
LOG("core.malloc_stats_print.entry", "");
tsdn = tsdn_fetch();
check_entry_exit_locking(tsdn);
if (config_debug) {
stats_print(write_cb, cbopaque, opts);
} else {
buf_writer_t buf_writer;
buf_writer_init(tsdn, &buf_writer, write_cb, cbopaque, NULL,
STATS_PRINT_BUFSIZE);
stats_print(buf_writer_cb, &buf_writer, opts);
buf_writer_terminate(tsdn, &buf_writer);
}
check_entry_exit_locking(tsdn);
LOG("core.malloc_stats_print.exit", "");
}
#undef STATS_PRINT_BUFSIZE
JEMALLOC_ALWAYS_INLINE size_t
je_malloc_usable_size_impl(JEMALLOC_USABLE_SIZE_CONST void *ptr) {
assert(malloc_initialized() || IS_INITIALIZER);
tsdn_t *tsdn = tsdn_fetch();
check_entry_exit_locking(tsdn);
size_t ret;
if (unlikely(ptr == NULL)) {
ret = 0;
} else {
if (config_debug || force_ivsalloc) {
ret = ivsalloc(tsdn, ptr);
assert(force_ivsalloc || ret != 0);
} else {
ret = isalloc(tsdn, ptr);
}
}
check_entry_exit_locking(tsdn);
return ret;
}
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr) {
LOG("core.malloc_usable_size.entry", "ptr: %p", ptr);
size_t ret = je_malloc_usable_size_impl(ptr);
LOG("core.malloc_usable_size.exit", "result: %zu", ret);
return ret;
}
#ifdef JEMALLOC_HAVE_MALLOC_SIZE
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
je_malloc_size(const void *ptr) {
LOG("core.malloc_size.entry", "ptr: %p", ptr);
size_t ret = je_malloc_usable_size_impl(ptr);
LOG("core.malloc_size.exit", "result: %zu", ret);
return ret;
}
#endif
static void
batch_alloc_prof_sample_assert(tsd_t *tsd, size_t batch, size_t usize) {
assert(config_prof && opt_prof);
bool prof_sample_event = te_prof_sample_event_lookahead(tsd,
batch * usize);
assert(!prof_sample_event);
size_t surplus;
prof_sample_event = te_prof_sample_event_lookahead_surplus(tsd,
(batch + 1) * usize, &surplus);
assert(prof_sample_event);
assert(surplus < usize);
}
size_t
batch_alloc(void **ptrs, size_t num, size_t size, int flags) {
LOG("core.batch_alloc.entry",
"ptrs: %p, num: %zu, size: %zu, flags: %d", ptrs, num, size, flags);
tsd_t *tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
size_t filled = 0;
if (unlikely(tsd == NULL || tsd_reentrancy_level_get(tsd) > 0)) {
goto label_done;
}
size_t alignment = MALLOCX_ALIGN_GET(flags);
size_t usize;
if (aligned_usize_get(size, alignment, &usize, NULL, false)) {
goto label_done;
}
szind_t ind = sz_size2index(usize);
bool zero = zero_get(MALLOCX_ZERO_GET(flags), /* slow */ true);
/*
* The cache bin and arena will be lazily initialized; it's hard to
* know in advance whether each of them needs to be initialized.
*/
cache_bin_t *bin = NULL;
arena_t *arena = NULL;
size_t nregs = 0;
if (likely(ind < SC_NBINS)) {
nregs = bin_infos[ind].nregs;
assert(nregs > 0);
}
while (filled < num) {
size_t batch = num - filled;
size_t surplus = SIZE_MAX; /* Dead store. */
bool prof_sample_event = config_prof && opt_prof
&& te_prof_sample_event_lookahead_surplus(tsd,
batch * usize, &surplus);
if (prof_sample_event) {
/*
* Adjust so that the batch does not trigger prof
* sampling.
*/
batch -= surplus / usize + 1;
batch_alloc_prof_sample_assert(tsd, batch, usize);
}
size_t progress = 0;
if (likely(ind < SC_NBINS) && batch >= nregs) {
if (arena == NULL) {
unsigned arena_ind = mallocx_arena_get(flags);
if (arena_get_from_ind(tsd, arena_ind,
&arena)) {
goto label_done;
}
if (arena == NULL) {
arena = arena_choose(tsd, NULL);
}
if (unlikely(arena == NULL)) {
goto label_done;
}
}
size_t arena_batch = batch - batch % nregs;
size_t n = arena_fill_small_fresh(tsd_tsdn(tsd), arena,
ind, ptrs + filled, arena_batch, zero);
progress += n;
filled += n;
}
if (likely(ind < nhbins) && progress < batch) {
if (bin == NULL) {
unsigned tcache_ind = mallocx_tcache_get(flags);
tcache_t *tcache = tcache_get_from_ind(tsd,
tcache_ind, /* slow */ true,
/* is_alloc */ true);
if (tcache != NULL) {
bin = &tcache->bins[ind];
}
}
/*
* If we don't have a tcache bin, we don't want to
* immediately give up, because there's the possibility
* that the user explicitly requested to bypass the
* tcache, or that the user explicitly turned off the
* tcache; in such cases, we go through the slow path,
* i.e. the mallocx() call at the end of the while loop.
*/
if (bin != NULL) {
size_t bin_batch = batch - progress;
/*
* n can be less than bin_batch, meaning that
* the cache bin does not have enough memory.
* In such cases, we rely on the slow path,
* i.e. the mallocx() call at the end of the
* while loop, to fill in the cache, and in the
* next iteration of the while loop, the tcache
* will contain a lot of memory, and we can
* harvest them here. Compared to the
* alternative approach where we directly go to
* the arena bins here, the overhead of our
* current approach should usually be minimal,
* since we never try to fetch more memory than
* what a slab contains via the tcache. An
* additional benefit is that the tcache will
* not be empty for the next allocation request.
*/
size_t n = cache_bin_alloc_batch(bin, bin_batch,
ptrs + filled);
if (config_stats) {
bin->tstats.nrequests += n;
}
if (zero) {
for (size_t i = 0; i < n; ++i) {
memset(ptrs[filled + i], 0,
usize);
}
}
if (config_prof && opt_prof
&& unlikely(ind >= SC_NBINS)) {
for (size_t i = 0; i < n; ++i) {
prof_tctx_reset_sampled(tsd,
ptrs[filled + i]);
}
}
progress += n;
filled += n;
}
}
/*
* For thread events other than prof sampling, trigger them as
* if there's a single allocation of size (n * usize). This is
* fine because:
* (a) these events do not alter the allocation itself, and
* (b) it's possible that some event would have been triggered
* multiple times, instead of only once, if the allocations
* were handled individually, but it would do no harm (or
* even be beneficial) to coalesce the triggerings.
*/
thread_alloc_event(tsd, progress * usize);
if (progress < batch || prof_sample_event) {
void *p = je_mallocx(size, flags);
if (p == NULL) { /* OOM */
break;
}
if (progress == batch) {
assert(prof_sampled(tsd, p));
}
ptrs[filled++] = p;
}
}
label_done:
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.batch_alloc.exit", "result: %zu", filled);
return filled;
}
/*
* End non-standard functions.
*/
/******************************************************************************/
/*
* The following functions are used by threading libraries for protection of
* malloc during fork().
*/
/*
* If an application creates a thread before doing any allocation in the main
* thread, then calls fork(2) in the main thread followed by memory allocation
* in the child process, a race can occur that results in deadlock within the
* child: the main thread may have forked while the created thread had
* partially initialized the allocator. Ordinarily jemalloc prevents
* fork/malloc races via the following functions it registers during
* initialization using pthread_atfork(), but of course that does no good if
* the allocator isn't fully initialized at fork time. The following library
* constructor is a partial solution to this problem. It may still be possible
* to trigger the deadlock described above, but doing so would involve forking
* via a library constructor that runs before jemalloc's runs.
*/
#ifndef JEMALLOC_JET
JEMALLOC_ATTR(constructor)
static void
jemalloc_constructor(void) {
malloc_init();
}
#endif
#ifndef JEMALLOC_MUTEX_INIT_CB
void
jemalloc_prefork(void)
#else
JEMALLOC_EXPORT void
_malloc_prefork(void)
#endif
{
tsd_t *tsd;
unsigned i, j, narenas;
arena_t *arena;
#ifdef JEMALLOC_MUTEX_INIT_CB
if (!malloc_initialized()) {
return;
}
#endif
assert(malloc_initialized());
tsd = tsd_fetch();
narenas = narenas_total_get();
witness_prefork(tsd_witness_tsdp_get(tsd));
/* Acquire all mutexes in a safe order. */
ctl_prefork(tsd_tsdn(tsd));
tcache_prefork(tsd_tsdn(tsd));
malloc_mutex_prefork(tsd_tsdn(tsd), &arenas_lock);
if (have_background_thread) {
background_thread_prefork0(tsd_tsdn(tsd));
}
prof_prefork0(tsd_tsdn(tsd));
if (have_background_thread) {
background_thread_prefork1(tsd_tsdn(tsd));
}
/* Break arena prefork into stages to preserve lock order. */
for (i = 0; i < 9; i++) {
for (j = 0; j < narenas; j++) {
if ((arena = arena_get(tsd_tsdn(tsd), j, false)) !=
NULL) {
switch (i) {
case 0:
arena_prefork0(tsd_tsdn(tsd), arena);
break;
case 1:
arena_prefork1(tsd_tsdn(tsd), arena);
break;
case 2:
arena_prefork2(tsd_tsdn(tsd), arena);
break;
case 3:
arena_prefork3(tsd_tsdn(tsd), arena);
break;
case 4:
arena_prefork4(tsd_tsdn(tsd), arena);
break;
case 5:
arena_prefork5(tsd_tsdn(tsd), arena);
break;
case 6:
arena_prefork6(tsd_tsdn(tsd), arena);
break;
case 7:
arena_prefork7(tsd_tsdn(tsd), arena);
break;
case 8:
arena_prefork8(tsd_tsdn(tsd), arena);
break;
default: not_reached();
}
}
}
}
prof_prefork1(tsd_tsdn(tsd));
stats_prefork(tsd_tsdn(tsd));
tsd_prefork(tsd);
}
#ifndef JEMALLOC_MUTEX_INIT_CB
void
jemalloc_postfork_parent(void)
#else
JEMALLOC_EXPORT void
_malloc_postfork(void)
#endif
{
tsd_t *tsd;
unsigned i, narenas;
#ifdef JEMALLOC_MUTEX_INIT_CB
if (!malloc_initialized()) {
return;
}
#endif
assert(malloc_initialized());
tsd = tsd_fetch();
tsd_postfork_parent(tsd);
witness_postfork_parent(tsd_witness_tsdp_get(tsd));
/* Release all mutexes, now that fork() has completed. */
stats_postfork_parent(tsd_tsdn(tsd));
for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
arena_t *arena;
if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) {
arena_postfork_parent(tsd_tsdn(tsd), arena);
}
}
prof_postfork_parent(tsd_tsdn(tsd));
if (have_background_thread) {
background_thread_postfork_parent(tsd_tsdn(tsd));
}
malloc_mutex_postfork_parent(tsd_tsdn(tsd), &arenas_lock);
tcache_postfork_parent(tsd_tsdn(tsd));
ctl_postfork_parent(tsd_tsdn(tsd));
}
void
jemalloc_postfork_child(void) {
tsd_t *tsd;
unsigned i, narenas;
assert(malloc_initialized());
tsd = tsd_fetch();
tsd_postfork_child(tsd);
witness_postfork_child(tsd_witness_tsdp_get(tsd));
/* Release all mutexes, now that fork() has completed. */
stats_postfork_child(tsd_tsdn(tsd));
for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
arena_t *arena;
if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) {
arena_postfork_child(tsd_tsdn(tsd), arena);
}
}
prof_postfork_child(tsd_tsdn(tsd));
if (have_background_thread) {
background_thread_postfork_child(tsd_tsdn(tsd));
}
malloc_mutex_postfork_child(tsd_tsdn(tsd), &arenas_lock);
tcache_postfork_child(tsd_tsdn(tsd));
ctl_postfork_child(tsd_tsdn(tsd));
}
/******************************************************************************/