server-skynet-source-3rd-je.../jemalloc/src/jemalloc.c
2010-02-11 14:45:59 -08:00

1338 lines
29 KiB
C

/*-
* This allocator implementation is designed to provide scalable performance
* for multi-threaded programs on multi-processor systems. The following
* features are included for this purpose:
*
* + Multiple arenas are used if there are multiple CPUs, which reduces lock
* contention and cache sloshing.
*
* + Thread-specific caching is used if there are multiple threads, which
* reduces the amount of locking.
*
* + Cache line sharing between arenas is avoided for internal data
* structures.
*
* + Memory is managed in chunks and runs (chunks can be split into runs),
* rather than as individual pages. This provides a constant-time
* mechanism for associating allocations with particular arenas.
*
* Allocation requests are rounded up to the nearest size class, and no record
* of the original request size is maintained. Allocations are broken into
* categories according to size class. Assuming 1 MiB chunks, 4 KiB pages and
* a 16 byte quantum on a 32-bit system, the size classes in each category are
* as follows:
*
* |========================================|
* | Category | Subcategory | Size |
* |========================================|
* | Small | Tiny | 2 |
* | | | 4 |
* | | | 8 |
* | |------------------+----------|
* | | Quantum-spaced | 16 |
* | | | 32 |
* | | | 48 |
* | | | ... |
* | | | 96 |
* | | | 112 |
* | | | 128 |
* | |------------------+----------|
* | | Cacheline-spaced | 192 |
* | | | 256 |
* | | | 320 |
* | | | 384 |
* | | | 448 |
* | | | 512 |
* | |------------------+----------|
* | | Sub-page | 760 |
* | | | 1024 |
* | | | 1280 |
* | | | ... |
* | | | 3328 |
* | | | 3584 |
* | | | 3840 |
* |========================================|
* | Medium | 4 KiB |
* | | 6 KiB |
* | | 8 KiB |
* | | ... |
* | | 28 KiB |
* | | 30 KiB |
* | | 32 KiB |
* |========================================|
* | Large | 36 KiB |
* | | 40 KiB |
* | | 44 KiB |
* | | ... |
* | | 1012 KiB |
* | | 1016 KiB |
* | | 1020 KiB |
* |========================================|
* | Huge | 1 MiB |
* | | 2 MiB |
* | | 3 MiB |
* | | ... |
* |========================================|
*
* Different mechanisms are used accoding to category:
*
* Small/medium : Each size class is segregated into its own set of runs.
* Each run maintains a bitmap of which regions are
* free/allocated.
*
* Large : Each allocation is backed by a dedicated run. Metadata are stored
* in the associated arena chunk header maps.
*
* Huge : Each allocation is backed by a dedicated contiguous set of chunks.
* Metadata are stored in a separate red-black tree.
*
*******************************************************************************
*/
#define JEMALLOC_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
malloc_mutex_t arenas_lock;
arena_t **arenas;
unsigned narenas;
#ifndef NO_TLS
static unsigned next_arena;
#endif
#ifndef NO_TLS
__thread arena_t *arenas_map JEMALLOC_ATTR(tls_model("initial-exec"));
#endif
/* Set to true once the allocator has been initialized. */
static bool malloc_initialized = false;
/* Used to let the initializing thread recursively allocate. */
static pthread_t malloc_initializer = (unsigned long)0;
/* Used to avoid initialization races. */
static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP;
#ifdef DYNAMIC_PAGE_SHIFT
size_t pagesize;
size_t pagesize_mask;
size_t lg_pagesize;
#endif
unsigned ncpus;
/* Runtime configuration options. */
const char *JEMALLOC_P(malloc_options)
JEMALLOC_ATTR(visibility("default"));
#ifdef JEMALLOC_DEBUG
bool opt_abort = true;
# ifdef JEMALLOC_FILL
bool opt_junk = true;
# endif
#else
bool opt_abort = false;
# ifdef JEMALLOC_FILL
bool opt_junk = false;
# endif
#endif
#ifdef JEMALLOC_SYSV
bool opt_sysv = false;
#endif
#ifdef JEMALLOC_XMALLOC
bool opt_xmalloc = false;
#endif
#ifdef JEMALLOC_FILL
bool opt_zero = false;
#endif
static int opt_narenas_lshift = 0;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static void wrtmessage(void *w4opaque, const char *p1, const char *p2,
const char *p3, const char *p4);
static void stats_print_atexit(void);
static unsigned malloc_ncpus(void);
static bool malloc_init_hard(void);
static void jemalloc_prefork(void);
static void jemalloc_postfork(void);
/******************************************************************************/
/* malloc_message() setup. */
#ifdef JEMALLOC_HAVE_ATTR
JEMALLOC_ATTR(visibility("hidden"))
#else
static
#endif
void
wrtmessage(void *w4opaque, const char *p1, const char *p2, const char *p3,
const char *p4)
{
if (write(STDERR_FILENO, p1, strlen(p1)) < 0
|| write(STDERR_FILENO, p2, strlen(p2)) < 0
|| write(STDERR_FILENO, p3, strlen(p3)) < 0
|| write(STDERR_FILENO, p4, strlen(p4)) < 0)
return;
}
void (*JEMALLOC_P(malloc_message))(void *, const char *p1, const char *p2,
const char *p3, const char *p4) JEMALLOC_ATTR(visibility("default")) =
wrtmessage;
/******************************************************************************/
/*
* Begin miscellaneous support functions.
*/
/* Create a new arena and insert it into the arenas array at index ind. */
arena_t *
arenas_extend(unsigned ind)
{
arena_t *ret;
/* Allocate enough space for trailing bins. */
ret = (arena_t *)base_alloc(sizeof(arena_t)
+ (sizeof(arena_bin_t) * (nbins - 1)));
if (ret != NULL && arena_new(ret, ind) == false) {
arenas[ind] = ret;
return (ret);
}
/* Only reached if there is an OOM error. */
/*
* OOM here is quite inconvenient to propagate, since dealing with it
* would require a check for failure in the fast path. Instead, punt
* by using arenas[0]. In practice, this is an extremely unlikely
* failure.
*/
malloc_write4("<jemalloc>", ": Error initializing arena\n", "", "");
if (opt_abort)
abort();
return (arenas[0]);
}
#ifndef NO_TLS
/*
* Choose an arena based on a per-thread value (slow-path code only, called
* only by choose_arena()).
*/
arena_t *
choose_arena_hard(void)
{
arena_t *ret;
if (narenas > 1) {
malloc_mutex_lock(&arenas_lock);
if ((ret = arenas[next_arena]) == NULL)
ret = arenas_extend(next_arena);
next_arena = (next_arena + 1) % narenas;
malloc_mutex_unlock(&arenas_lock);
} else
ret = arenas[0];
arenas_map = ret;
return (ret);
}
#endif
static void
stats_print_atexit(void)
{
#if (defined(JEMALLOC_TCACHE) && defined(JEMALLOC_STATS))
unsigned i;
/*
* Merge stats from extant threads. This is racy, since individual
* threads do not lock when recording tcache stats events. As a
* consequence, the final stats may be slightly out of date by the time
* they are reported, if other threads continue to allocate.
*/
for (i = 0; i < narenas; i++) {
arena_t *arena = arenas[i];
if (arena != NULL) {
tcache_t *tcache;
malloc_mutex_lock(&arena->lock);
ql_foreach(tcache, &arena->tcache_ql, link) {
tcache_stats_merge(tcache, arena);
}
malloc_mutex_unlock(&arena->lock);
}
}
#endif
JEMALLOC_P(malloc_stats_print)(NULL, NULL, NULL);
}
/*
* End miscellaneous support functions.
*/
/******************************************************************************/
/*
* Begin initialization functions.
*/
static unsigned
malloc_ncpus(void)
{
unsigned ret;
long result;
result = sysconf(_SC_NPROCESSORS_ONLN);
if (result == -1) {
/* Error. */
ret = 1;
}
ret = (unsigned)result;
return (ret);
}
/*
* FreeBSD's pthreads implementation calls malloc(3), so the malloc
* implementation has to take pains to avoid infinite recursion during
* initialization.
*/
static inline bool
malloc_init(void)
{
if (malloc_initialized == false)
return (malloc_init_hard());
return (false);
}
static bool
malloc_init_hard(void)
{
unsigned i;
int linklen;
char buf[PATH_MAX + 1];
const char *opts;
arena_t *init_arenas[1];
malloc_mutex_lock(&init_lock);
if (malloc_initialized || malloc_initializer == pthread_self()) {
/*
* Another thread initialized the allocator before this one
* acquired init_lock, or this thread is the initializing
* thread, and it is recursively allocating.
*/
malloc_mutex_unlock(&init_lock);
return (false);
}
if (malloc_initializer != (unsigned long)0) {
/* Busy-wait until the initializing thread completes. */
do {
malloc_mutex_unlock(&init_lock);
CPU_SPINWAIT;
malloc_mutex_lock(&init_lock);
} while (malloc_initialized == false);
return (false);
}
#ifdef DYNAMIC_PAGE_SHIFT
/* Get page size. */
{
long result;
result = sysconf(_SC_PAGESIZE);
assert(result != -1);
pagesize = (unsigned)result;
/*
* We assume that pagesize is a power of 2 when calculating
* pagesize_mask and lg_pagesize.
*/
assert(((result - 1) & result) == 0);
pagesize_mask = result - 1;
lg_pagesize = ffs((int)result) - 1;
}
#endif
for (i = 0; i < 3; i++) {
unsigned j;
/* Get runtime configuration. */
switch (i) {
case 0:
if ((linklen = readlink("/etc/jemalloc.conf", buf,
sizeof(buf) - 1)) != -1) {
/*
* Use the contents of the "/etc/jemalloc.conf"
* symbolic link's name.
*/
buf[linklen] = '\0';
opts = buf;
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
case 1:
if ((opts = getenv("JEMALLOC_OPTIONS")) != NULL) {
/*
* Do nothing; opts is already initialized to
* the value of the JEMALLOC_OPTIONS
* environment variable.
*/
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
case 2:
if (JEMALLOC_P(malloc_options) != NULL) {
/*
* Use options that were compiled into the
* program.
*/
opts = JEMALLOC_P(malloc_options);
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
default:
/* NOTREACHED */
assert(false);
buf[0] = '\0';
opts = buf;
}
for (j = 0; opts[j] != '\0'; j++) {
unsigned k, nreps;
bool nseen;
/* Parse repetition count, if any. */
for (nreps = 0, nseen = false;; j++, nseen = true) {
switch (opts[j]) {
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
case '8': case '9':
nreps *= 10;
nreps += opts[j] - '0';
break;
default:
goto MALLOC_OUT;
}
}
MALLOC_OUT:
if (nseen == false)
nreps = 1;
for (k = 0; k < nreps; k++) {
switch (opts[j]) {
case 'a':
opt_abort = false;
break;
case 'A':
opt_abort = true;
break;
#ifdef JEMALLOC_PROF
case 'b':
if (opt_lg_prof_bt_max > 0)
opt_lg_prof_bt_max--;
break;
case 'B':
if (opt_lg_prof_bt_max < LG_PROF_BT_MAX)
opt_lg_prof_bt_max++;
break;
#endif
case 'c':
if (opt_lg_cspace_max - 1 >
opt_lg_qspace_max &&
opt_lg_cspace_max >
LG_CACHELINE)
opt_lg_cspace_max--;
break;
case 'C':
if (opt_lg_cspace_max < PAGE_SHIFT
- 1)
opt_lg_cspace_max++;
break;
case 'd':
if (opt_lg_dirty_mult + 1 <
(sizeof(size_t) << 3))
opt_lg_dirty_mult++;
break;
case 'D':
if (opt_lg_dirty_mult >= 0)
opt_lg_dirty_mult--;
break;
#ifdef JEMALLOC_PROF
case 'f':
opt_prof = false;
break;
case 'F':
opt_prof = true;
break;
#endif
#ifdef JEMALLOC_TCACHE
case 'g':
if (opt_lg_tcache_gc_sweep >= 0)
opt_lg_tcache_gc_sweep--;
break;
case 'G':
if (opt_lg_tcache_gc_sweep + 1 <
(sizeof(size_t) << 3))
opt_lg_tcache_gc_sweep++;
break;
case 'h':
if (opt_lg_tcache_nslots > 0)
opt_lg_tcache_nslots--;
break;
case 'H':
if (opt_lg_tcache_nslots + 1 <
(sizeof(size_t) << 3))
opt_lg_tcache_nslots++;
break;
#endif
#ifdef JEMALLOC_PROF
case 'i':
if (opt_lg_prof_interval > 0)
opt_lg_prof_interval--;
break;
case 'I':
if (opt_lg_prof_interval + 1 <
(sizeof(uint64_t) << 3))
opt_lg_prof_interval++;
break;
#endif
#ifdef JEMALLOC_FILL
case 'j':
opt_junk = false;
break;
case 'J':
opt_junk = true;
break;
#endif
case 'k':
/*
* Chunks always require at least one
* header page, plus enough room to
* hold a run for the largest medium
* size class (one page more than the
* size).
*/
if ((1U << (opt_lg_chunk - 1)) >=
(2U << PAGE_SHIFT) + (1U <<
opt_lg_medium_max))
opt_lg_chunk--;
break;
case 'K':
if (opt_lg_chunk + 1 <
(sizeof(size_t) << 3))
opt_lg_chunk++;
break;
#ifdef JEMALLOC_PROF
case 'l':
opt_prof_leak = false;
break;
case 'L':
opt_prof_leak = true;
break;
#endif
case 'm':
if (opt_lg_medium_max > PAGE_SHIFT)
opt_lg_medium_max--;
break;
case 'M':
if (opt_lg_medium_max + 1 <
opt_lg_chunk)
opt_lg_medium_max++;
break;
case 'n':
opt_narenas_lshift--;
break;
case 'N':
opt_narenas_lshift++;
break;
#ifdef JEMALLOC_SWAP
case 'o':
opt_overcommit = false;
break;
case 'O':
opt_overcommit = true;
break;
#endif
case 'p':
opt_stats_print = false;
break;
case 'P':
opt_stats_print = true;
break;
case 'q':
if (opt_lg_qspace_max > LG_QUANTUM)
opt_lg_qspace_max--;
break;
case 'Q':
if (opt_lg_qspace_max + 1 <
opt_lg_cspace_max)
opt_lg_qspace_max++;
break;
#ifdef JEMALLOC_PROF
case 'u':
opt_prof_udump = false;
break;
case 'U':
opt_prof_udump = true;
break;
#endif
#ifdef JEMALLOC_SYSV
case 'v':
opt_sysv = false;
break;
case 'V':
opt_sysv = true;
break;
#endif
#ifdef JEMALLOC_XMALLOC
case 'x':
opt_xmalloc = false;
break;
case 'X':
opt_xmalloc = true;
break;
#endif
#ifdef JEMALLOC_FILL
case 'z':
opt_zero = false;
break;
case 'Z':
opt_zero = true;
break;
#endif
default: {
char cbuf[2];
cbuf[0] = opts[j];
cbuf[1] = '\0';
malloc_write4("<jemalloc>",
": Unsupported character "
"in malloc options: '", cbuf,
"'\n");
}
}
}
}
}
/* Register fork handlers. */
if (pthread_atfork(jemalloc_prefork, jemalloc_postfork,
jemalloc_postfork) != 0) {
malloc_write4("<jemalloc>", ": Error in pthread_atfork()\n", "",
"");
if (opt_abort)
abort();
}
if (ctl_boot()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
if (opt_stats_print) {
/* Print statistics at exit. */
if (atexit(stats_print_atexit) != 0) {
malloc_write4("<jemalloc>", ": Error in atexit()\n", "",
"");
if (opt_abort)
abort();
}
}
if (chunk_boot()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
if (base_boot()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
#ifdef JEMALLOC_PROF
prof_boot0();
#endif
if (arena_boot()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
#ifdef JEMALLOC_TCACHE
tcache_boot();
#endif
if (huge_boot()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
/*
* Create enough scaffolding to allow recursive allocation in
* malloc_ncpus().
*/
narenas = 1;
arenas = init_arenas;
memset(arenas, 0, sizeof(arena_t *) * narenas);
/*
* Initialize one arena here. The rest are lazily created in
* choose_arena_hard().
*/
arenas_extend(0);
if (arenas[0] == NULL) {
malloc_mutex_unlock(&init_lock);
return (true);
}
#ifndef NO_TLS
/*
* Assign the initial arena to the initial thread, in order to avoid
* spurious creation of an extra arena if the application switches to
* threaded mode.
*/
arenas_map = arenas[0];
#endif
malloc_mutex_init(&arenas_lock);
#ifdef JEMALLOC_PROF
if (prof_boot1()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
#endif
/* Get number of CPUs. */
malloc_initializer = pthread_self();
malloc_mutex_unlock(&init_lock);
ncpus = malloc_ncpus();
malloc_mutex_lock(&init_lock);
if (ncpus > 1) {
/*
* For SMP systems, create more than one arena per CPU by
* default.
*/
#ifdef JEMALLOC_TCACHE
if (tcache_nslots
# ifdef JEMALLOC_PROF
/*
* Profile data storage concurrency is directly linked to
* the number of arenas, so only drop the number of arenas
* on behalf of enabled tcache if profiling is disabled.
*/
&& opt_prof == false
# endif
) {
/*
* Only large object allocation/deallocation is
* guaranteed to acquire an arena mutex, so we can get
* away with fewer arenas than without thread caching.
*/
opt_narenas_lshift += 1;
} else {
#endif
/*
* All allocations must acquire an arena mutex, so use
* plenty of arenas.
*/
opt_narenas_lshift += 2;
#ifdef JEMALLOC_TCACHE
}
#endif
}
/* Determine how many arenas to use. */
narenas = ncpus;
if (opt_narenas_lshift > 0) {
if ((narenas << opt_narenas_lshift) > narenas)
narenas <<= opt_narenas_lshift;
/*
* Make sure not to exceed the limits of what base_alloc() can
* handle.
*/
if (narenas * sizeof(arena_t *) > chunksize)
narenas = chunksize / sizeof(arena_t *);
} else if (opt_narenas_lshift < 0) {
if ((narenas >> -opt_narenas_lshift) < narenas)
narenas >>= -opt_narenas_lshift;
/* Make sure there is at least one arena. */
if (narenas == 0)
narenas = 1;
}
#ifdef NO_TLS
if (narenas > 1) {
static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
223, 227, 229, 233, 239, 241, 251, 257, 263};
unsigned nprimes, parenas;
/*
* Pick a prime number of hash arenas that is more than narenas
* so that direct hashing of pthread_self() pointers tends to
* spread allocations evenly among the arenas.
*/
assert((narenas & 1) == 0); /* narenas must be even. */
nprimes = (sizeof(primes) >> LG_SIZEOF_INT);
parenas = primes[nprimes - 1]; /* In case not enough primes. */
for (i = 1; i < nprimes; i++) {
if (primes[i] > narenas) {
parenas = primes[i];
break;
}
}
narenas = parenas;
}
#endif
#ifndef NO_TLS
next_arena = 0;
#endif
/* Allocate and initialize arenas. */
arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
if (arenas == NULL) {
malloc_mutex_unlock(&init_lock);
return (true);
}
/*
* Zero the array. In practice, this should always be pre-zeroed,
* since it was just mmap()ed, but let's be sure.
*/
memset(arenas, 0, sizeof(arena_t *) * narenas);
/* Copy the pointer to the one arena that was already initialized. */
arenas[0] = init_arenas[0];
malloc_initialized = true;
malloc_mutex_unlock(&init_lock);
return (false);
}
/*
* End initialization functions.
*/
/******************************************************************************/
/*
* Begin malloc(3)-compatible functions.
*/
JEMALLOC_ATTR(malloc)
JEMALLOC_ATTR(visibility("default"))
void *
JEMALLOC_P(malloc)(size_t size)
{
void *ret;
#ifdef JEMALLOC_PROF
prof_thr_cnt_t *cnt;
#endif
if (malloc_init()) {
ret = NULL;
goto OOM;
}
if (size == 0) {
#ifdef JEMALLOC_SYSV
if (opt_sysv == false)
#endif
size = 1;
#ifdef JEMALLOC_SYSV
else {
# ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write4("<jemalloc>",
": Error in malloc(): invalid size 0\n", "",
"");
abort();
}
# endif
ret = NULL;
goto RETURN;
}
#endif
}
#ifdef JEMALLOC_PROF
if (opt_prof && (cnt = prof_alloc_prep()) == NULL) {
ret = NULL;
goto OOM;
}
#endif
ret = imalloc(size);
OOM:
if (ret == NULL) {
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write4("<jemalloc>",
": Error in malloc(): out of memory\n", "",
"");
abort();
}
#endif
errno = ENOMEM;
}
#ifdef JEMALLOC_SYSV
RETURN:
#endif
#ifdef JEMALLOC_PROF
if (opt_prof && ret != NULL)
prof_malloc(ret, cnt);
#endif
return (ret);
}
JEMALLOC_ATTR(nonnull(1))
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(posix_memalign)(void **memptr, size_t alignment, size_t size)
{
int ret;
void *result;
#ifdef JEMALLOC_PROF
prof_thr_cnt_t *cnt;
#endif
if (malloc_init())
result = NULL;
else {
if (size == 0) {
#ifdef JEMALLOC_SYSV
if (opt_sysv == false)
#endif
size = 1;
#ifdef JEMALLOC_SYSV
else {
# ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write4("<jemalloc>",
": Error in posix_memalign(): "
"invalid size 0\n", "", "");
abort();
}
# endif
result = NULL;
*memptr = NULL;
ret = 0;
goto RETURN;
}
#endif
}
/* Make sure that alignment is a large enough power of 2. */
if (((alignment - 1) & alignment) != 0
|| alignment < sizeof(void *)) {
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write4("<jemalloc>",
": Error in posix_memalign(): "
"invalid alignment\n", "", "");
abort();
}
#endif
result = NULL;
ret = EINVAL;
goto RETURN;
}
#ifdef JEMALLOC_PROF
if (opt_prof && (cnt = prof_alloc_prep()) == NULL) {
result = NULL;
ret = EINVAL;
} else
#endif
result = ipalloc(alignment, size);
}
if (result == NULL) {
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write4("<jemalloc>",
": Error in posix_memalign(): out of memory\n",
"", "");
abort();
}
#endif
ret = ENOMEM;
goto RETURN;
}
*memptr = result;
ret = 0;
RETURN:
#ifdef JEMALLOC_PROF
if (opt_prof && result != NULL)
prof_malloc(result, cnt);
#endif
return (ret);
}
JEMALLOC_ATTR(malloc)
JEMALLOC_ATTR(visibility("default"))
void *
JEMALLOC_P(calloc)(size_t num, size_t size)
{
void *ret;
size_t num_size;
#ifdef JEMALLOC_PROF
prof_thr_cnt_t *cnt;
#endif
if (malloc_init()) {
num_size = 0;
ret = NULL;
goto RETURN;
}
num_size = num * size;
if (num_size == 0) {
#ifdef JEMALLOC_SYSV
if ((opt_sysv == false) && ((num == 0) || (size == 0)))
#endif
num_size = 1;
#ifdef JEMALLOC_SYSV
else {
ret = NULL;
goto RETURN;
}
#endif
/*
* Try to avoid division here. We know that it isn't possible to
* overflow during multiplication if neither operand uses any of the
* most significant half of the bits in a size_t.
*/
} else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
&& (num_size / size != num)) {
/* size_t overflow. */
ret = NULL;
goto RETURN;
}
#ifdef JEMALLOC_PROF
if (opt_prof && (cnt = prof_alloc_prep()) == NULL) {
ret = NULL;
goto RETURN;
}
#endif
ret = icalloc(num_size);
RETURN:
if (ret == NULL) {
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write4("<jemalloc>",
": Error in calloc(): out of memory\n", "",
"");
abort();
}
#endif
errno = ENOMEM;
}
#ifdef JEMALLOC_PROF
if (opt_prof && ret != NULL)
prof_malloc(ret, cnt);
#endif
return (ret);
}
JEMALLOC_ATTR(visibility("default"))
void *
JEMALLOC_P(realloc)(void *ptr, size_t size)
{
void *ret;
#ifdef JEMALLOC_PROF
size_t old_size;
prof_thr_cnt_t *cnt, *old_cnt;
#endif
if (size == 0) {
#ifdef JEMALLOC_SYSV
if (opt_sysv == false)
#endif
size = 1;
#ifdef JEMALLOC_SYSV
else {
if (ptr != NULL) {
#ifdef JEMALLOC_PROF
if (opt_prof) {
old_size = isalloc(ptr);
old_cnt = prof_cnt_get(ptr);
cnt = NULL;
}
#endif
idalloc(ptr);
}
#ifdef JEMALLOC_PROF
else if (opt_prof) {
old_size = 0;
old_cnt = NULL;
cnt = NULL;
}
#endif
ret = NULL;
goto RETURN;
}
#endif
}
if (ptr != NULL) {
assert(malloc_initialized || malloc_initializer ==
pthread_self());
#ifdef JEMALLOC_PROF
if (opt_prof) {
old_size = isalloc(ptr);
old_cnt = prof_cnt_get(ptr);
if ((cnt = prof_alloc_prep()) == NULL) {
ret = NULL;
goto OOM;
}
}
#endif
ret = iralloc(ptr, size);
#ifdef JEMALLOC_PROF
OOM:
#endif
if (ret == NULL) {
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write4("<jemalloc>",
": Error in realloc(): out of "
"memory\n", "", "");
abort();
}
#endif
errno = ENOMEM;
}
} else {
#ifdef JEMALLOC_PROF
if (opt_prof) {
old_size = 0;
old_cnt = NULL;
}
#endif
if (malloc_init()) {
#ifdef JEMALLOC_PROF
if (opt_prof)
cnt = NULL;
#endif
ret = NULL;
} else {
#ifdef JEMALLOC_PROF
if (opt_prof && (cnt = prof_alloc_prep()) == NULL) {
ret = NULL;
} else
#endif
ret = imalloc(size);
}
if (ret == NULL) {
#ifdef JEMALLOC_XMALLOC
if (opt_xmalloc) {
malloc_write4("<jemalloc>",
": Error in realloc(): out of "
"memory\n", "", "");
abort();
}
#endif
errno = ENOMEM;
}
}
#ifdef JEMALLOC_SYSV
RETURN:
#endif
#ifdef JEMALLOC_PROF
if (opt_prof)
prof_realloc(ret, cnt, ptr, old_size, old_cnt);
#endif
return (ret);
}
JEMALLOC_ATTR(visibility("default"))
void
JEMALLOC_P(free)(void *ptr)
{
if (ptr != NULL) {
assert(malloc_initialized || malloc_initializer ==
pthread_self());
#ifdef JEMALLOC_PROF
if (opt_prof)
prof_free(ptr);
#endif
idalloc(ptr);
}
}
/*
* End malloc(3)-compatible functions.
*/
/******************************************************************************/
/*
* Begin non-standard functions.
*/
JEMALLOC_ATTR(visibility("default"))
size_t
JEMALLOC_P(malloc_usable_size)(const void *ptr)
{
size_t ret;
assert(ptr != NULL);
ret = isalloc(ptr);
return (ret);
}
#ifdef JEMALLOC_SWAP
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(malloc_swap_enable)(const int *fds, unsigned nfds, int prezeroed)
{
/*
* Make sure malloc is initialized, because we need page size, chunk
* size, etc.
*/
if (malloc_init())
return (-1);
return (chunk_swap_enable(fds, nfds, (prezeroed != 0)) ? -1 : 0);
}
#endif
JEMALLOC_ATTR(visibility("default"))
void
JEMALLOC_P(malloc_stats_print)(void (*write4)(void *, const char *,
const char *, const char *, const char *), void *w4opaque, const char *opts)
{
stats_print(write4, w4opaque, opts);
}
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(mallctl)(const char *name, void *oldp, size_t *oldlenp, void *newp,
size_t newlen)
{
if (malloc_init())
return (EAGAIN);
return (ctl_byname(name, oldp, oldlenp, newp, newlen));
}
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(mallctlnametomib)(const char *name, size_t *mibp, size_t *miblenp)
{
if (malloc_init())
return (EAGAIN);
return (ctl_nametomib(name, mibp, miblenp));
}
JEMALLOC_ATTR(visibility("default"))
int
JEMALLOC_P(mallctlbymib)(const size_t *mib, size_t miblen, void *oldp,
size_t *oldlenp, void *newp, size_t newlen)
{
if (malloc_init())
return (EAGAIN);
return (ctl_bymib(mib, miblen, oldp, oldlenp, newp, newlen));
}
/*
* End non-standard functions.
*/
/******************************************************************************/
/*
* The following functions are used by threading libraries for protection of
* malloc during fork(). These functions are only called if the program is
* running in threaded mode, so there is no need to check whether the program
* is threaded here.
*/
static void
jemalloc_prefork(void)
{
unsigned i;
/* Acquire all mutexes in a safe order. */
malloc_mutex_lock(&arenas_lock);
for (i = 0; i < narenas; i++) {
if (arenas[i] != NULL)
malloc_mutex_lock(&arenas[i]->lock);
}
malloc_mutex_lock(&base_mtx);
malloc_mutex_lock(&huge_mtx);
#ifdef JEMALLOC_DSS
malloc_mutex_lock(&dss_mtx);
#endif
#ifdef JEMALLOC_SWAP
malloc_mutex_lock(&swap_mtx);
#endif
}
static void
jemalloc_postfork(void)
{
unsigned i;
/* Release all mutexes, now that fork() has completed. */
#ifdef JEMALLOC_SWAP
malloc_mutex_unlock(&swap_mtx);
#endif
#ifdef JEMALLOC_DSS
malloc_mutex_unlock(&dss_mtx);
#endif
malloc_mutex_unlock(&huge_mtx);
malloc_mutex_unlock(&base_mtx);
for (i = 0; i < narenas; i++) {
if (arenas[i] != NULL)
malloc_mutex_unlock(&arenas[i]->lock);
}
malloc_mutex_unlock(&arenas_lock);
}