server-skynet-source-3rd-je.../include/jemalloc/internal/ph.h
Amaury Séchet 543e2d61e6 Simplify the logic in ph_insert
Also fixes what looks like an off by one error in the lazy aux list
merge part of the code that previously never touched the last node in
the aux list.
2023-03-31 14:34:24 -07:00

522 lines
15 KiB
C

#ifndef JEMALLOC_INTERNAL_PH_H
#define JEMALLOC_INTERNAL_PH_H
/*
* A Pairing Heap implementation.
*
* "The Pairing Heap: A New Form of Self-Adjusting Heap"
* https://www.cs.cmu.edu/~sleator/papers/pairing-heaps.pdf
*
* With auxiliary twopass list, described in a follow on paper.
*
* "Pairing Heaps: Experiments and Analysis"
* http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.2988&rep=rep1&type=pdf
*
*******************************************************************************
*
* We include a non-obvious optimization:
* - First, we introduce a new pop-and-link operation; pop the two most
* recently-inserted items off the aux-list, link them, and push the resulting
* heap.
* - We maintain a count of the number of insertions since the last time we
* merged the aux-list (i.e. via first() or remove_first()). After N inserts,
* we do ffs(N) pop-and-link operations.
*
* One way to think of this is that we're progressively building up a tree in
* the aux-list, rather than a linked-list (think of the series of merges that
* will be performed as the aux-count grows).
*
* There's a couple reasons we benefit from this:
* - Ordinarily, after N insertions, the aux-list is of size N. With our
* strategy, it's of size O(log(N)). So we decrease the worst-case time of
* first() calls, and reduce the average cost of remove_min calls. Since
* these almost always occur while holding a lock, we practically reduce the
* frequency of unusually long hold times.
* - This moves the bulk of the work of merging the aux-list onto the threads
* that are inserting into the heap. In some common scenarios, insertions
* happen in bulk, from a single thread (think tcache flushing; we potentially
* move many slabs from slabs_full to slabs_nonfull). All the nodes in this
* case are in the inserting threads cache, and linking them is very cheap
* (cache misses dominate linking cost). Without this optimization, linking
* happens on the next call to remove_first. Since that remove_first call
* likely happens on a different thread (or at least, after the cache has
* gotten cold if done on the same thread), deferring linking trades cheap
* link operations now for expensive ones later.
*
* The ffs trick keeps amortized insert cost at constant time. Similar
* strategies based on periodically sorting the list after a batch of operations
* perform worse than this in practice, even with various fancy tricks; they
* all took amortized complexity of an insert from O(1) to O(log(n)).
*/
typedef int (*ph_cmp_t)(void *, void *);
/* Node structure. */
typedef struct phn_link_s phn_link_t;
struct phn_link_s {
void *prev;
void *next;
void *lchild;
};
typedef struct ph_s ph_t;
struct ph_s {
void *root;
/*
* Inserts done since the last aux-list merge. This is not necessarily
* the size of the aux-list, since it's possible that removals have
* happened since, and we don't track whether or not those removals are
* from the aux list.
*/
size_t auxcount;
};
JEMALLOC_ALWAYS_INLINE phn_link_t *
phn_link_get(void *phn, size_t offset) {
return (phn_link_t *)(((uintptr_t)phn) + offset);
}
JEMALLOC_ALWAYS_INLINE void
phn_link_init(void *phn, size_t offset) {
phn_link_get(phn, offset)->prev = NULL;
phn_link_get(phn, offset)->next = NULL;
phn_link_get(phn, offset)->lchild = NULL;
}
/* Internal utility helpers. */
JEMALLOC_ALWAYS_INLINE void *
phn_lchild_get(void *phn, size_t offset) {
return phn_link_get(phn, offset)->lchild;
}
JEMALLOC_ALWAYS_INLINE void
phn_lchild_set(void *phn, void *lchild, size_t offset) {
phn_link_get(phn, offset)->lchild = lchild;
}
JEMALLOC_ALWAYS_INLINE void *
phn_next_get(void *phn, size_t offset) {
return phn_link_get(phn, offset)->next;
}
JEMALLOC_ALWAYS_INLINE void
phn_next_set(void *phn, void *next, size_t offset) {
phn_link_get(phn, offset)->next = next;
}
JEMALLOC_ALWAYS_INLINE void *
phn_prev_get(void *phn, size_t offset) {
return phn_link_get(phn, offset)->prev;
}
JEMALLOC_ALWAYS_INLINE void
phn_prev_set(void *phn, void *prev, size_t offset) {
phn_link_get(phn, offset)->prev = prev;
}
JEMALLOC_ALWAYS_INLINE void
phn_merge_ordered(void *phn0, void *phn1, size_t offset,
ph_cmp_t cmp) {
void *phn0child;
assert(phn0 != NULL);
assert(phn1 != NULL);
assert(cmp(phn0, phn1) <= 0);
phn_prev_set(phn1, phn0, offset);
phn0child = phn_lchild_get(phn0, offset);
phn_next_set(phn1, phn0child, offset);
if (phn0child != NULL) {
phn_prev_set(phn0child, phn1, offset);
}
phn_lchild_set(phn0, phn1, offset);
}
JEMALLOC_ALWAYS_INLINE void *
phn_merge(void *phn0, void *phn1, size_t offset, ph_cmp_t cmp) {
void *result;
if (phn0 == NULL) {
result = phn1;
} else if (phn1 == NULL) {
result = phn0;
} else if (cmp(phn0, phn1) < 0) {
phn_merge_ordered(phn0, phn1, offset, cmp);
result = phn0;
} else {
phn_merge_ordered(phn1, phn0, offset, cmp);
result = phn1;
}
return result;
}
JEMALLOC_ALWAYS_INLINE void *
phn_merge_siblings(void *phn, size_t offset, ph_cmp_t cmp) {
void *head = NULL;
void *tail = NULL;
void *phn0 = phn;
void *phn1 = phn_next_get(phn0, offset);
/*
* Multipass merge, wherein the first two elements of a FIFO
* are repeatedly merged, and each result is appended to the
* singly linked FIFO, until the FIFO contains only a single
* element. We start with a sibling list but no reference to
* its tail, so we do a single pass over the sibling list to
* populate the FIFO.
*/
if (phn1 != NULL) {
void *phnrest = phn_next_get(phn1, offset);
if (phnrest != NULL) {
phn_prev_set(phnrest, NULL, offset);
}
phn_prev_set(phn0, NULL, offset);
phn_next_set(phn0, NULL, offset);
phn_prev_set(phn1, NULL, offset);
phn_next_set(phn1, NULL, offset);
phn0 = phn_merge(phn0, phn1, offset, cmp);
head = tail = phn0;
phn0 = phnrest;
while (phn0 != NULL) {
phn1 = phn_next_get(phn0, offset);
if (phn1 != NULL) {
phnrest = phn_next_get(phn1, offset);
if (phnrest != NULL) {
phn_prev_set(phnrest, NULL, offset);
}
phn_prev_set(phn0, NULL, offset);
phn_next_set(phn0, NULL, offset);
phn_prev_set(phn1, NULL, offset);
phn_next_set(phn1, NULL, offset);
phn0 = phn_merge(phn0, phn1, offset, cmp);
phn_next_set(tail, phn0, offset);
tail = phn0;
phn0 = phnrest;
} else {
phn_next_set(tail, phn0, offset);
tail = phn0;
phn0 = NULL;
}
}
phn0 = head;
phn1 = phn_next_get(phn0, offset);
if (phn1 != NULL) {
while (true) {
head = phn_next_get(phn1, offset);
assert(phn_prev_get(phn0, offset) == NULL);
phn_next_set(phn0, NULL, offset);
assert(phn_prev_get(phn1, offset) == NULL);
phn_next_set(phn1, NULL, offset);
phn0 = phn_merge(phn0, phn1, offset, cmp);
if (head == NULL) {
break;
}
phn_next_set(tail, phn0, offset);
tail = phn0;
phn0 = head;
phn1 = phn_next_get(phn0, offset);
}
}
}
return phn0;
}
JEMALLOC_ALWAYS_INLINE void
ph_merge_aux(ph_t *ph, size_t offset, ph_cmp_t cmp) {
ph->auxcount = 0;
void *phn = phn_next_get(ph->root, offset);
if (phn != NULL) {
phn_prev_set(ph->root, NULL, offset);
phn_next_set(ph->root, NULL, offset);
phn_prev_set(phn, NULL, offset);
phn = phn_merge_siblings(phn, offset, cmp);
assert(phn_next_get(phn, offset) == NULL);
ph->root = phn_merge(ph->root, phn, offset, cmp);
}
}
JEMALLOC_ALWAYS_INLINE void *
ph_merge_children(void *phn, size_t offset, ph_cmp_t cmp) {
void *result;
void *lchild = phn_lchild_get(phn, offset);
if (lchild == NULL) {
result = NULL;
} else {
result = phn_merge_siblings(lchild, offset, cmp);
}
return result;
}
JEMALLOC_ALWAYS_INLINE void
ph_new(ph_t *ph) {
ph->root = NULL;
ph->auxcount = 0;
}
JEMALLOC_ALWAYS_INLINE bool
ph_empty(ph_t *ph) {
return ph->root == NULL;
}
JEMALLOC_ALWAYS_INLINE void *
ph_first(ph_t *ph, size_t offset, ph_cmp_t cmp) {
if (ph->root == NULL) {
return NULL;
}
ph_merge_aux(ph, offset, cmp);
return ph->root;
}
JEMALLOC_ALWAYS_INLINE void *
ph_any(ph_t *ph, size_t offset) {
if (ph->root == NULL) {
return NULL;
}
void *aux = phn_next_get(ph->root, offset);
if (aux != NULL) {
return aux;
}
return ph->root;
}
/* Returns true if we should stop trying to merge. */
JEMALLOC_ALWAYS_INLINE bool
ph_try_aux_merge_pair(ph_t *ph, size_t offset, ph_cmp_t cmp) {
assert(ph->root != NULL);
void *phn0 = phn_next_get(ph->root, offset);
if (phn0 == NULL) {
return true;
}
void *phn1 = phn_next_get(phn0, offset);
if (phn1 == NULL) {
return true;
}
void *next_phn1 = phn_next_get(phn1, offset);
phn_next_set(phn0, NULL, offset);
phn_prev_set(phn0, NULL, offset);
phn_next_set(phn1, NULL, offset);
phn_prev_set(phn1, NULL, offset);
phn0 = phn_merge(phn0, phn1, offset, cmp);
phn_next_set(phn0, next_phn1, offset);
if (next_phn1 != NULL) {
phn_prev_set(next_phn1, phn0, offset);
}
phn_next_set(ph->root, phn0, offset);
phn_prev_set(phn0, ph->root, offset);
return next_phn1 == NULL;
}
JEMALLOC_ALWAYS_INLINE void
ph_insert(ph_t *ph, void *phn, size_t offset, ph_cmp_t cmp) {
phn_link_init(phn, offset);
/*
* Treat the root as an aux list during insertion, and lazily merge
* during a_prefix##remove_first(). For elements that are inserted,
* then removed via a_prefix##remove() before the aux list is ever
* processed, this makes insert/remove constant-time, whereas eager
* merging would make insert O(log n).
*/
if (ph->root == NULL) {
ph->root = phn;
return;
}
/*
* As a special case, check to see if we can replace the root.
* This is practically common in some important cases, and lets
* us defer some insertions (hopefully, until the point where
* some of the items in the aux list have been removed, savings
* us from linking them at all).
*/
if (cmp(phn, ph->root) < 0) {
phn_lchild_set(phn, ph->root, offset);
phn_prev_set(ph->root, phn, offset);
ph->root = phn;
ph->auxcount = 0;
return;
}
phn_next_set(phn, phn_next_get(ph->root, offset), offset);
if (phn_next_get(ph->root, offset) != NULL) {
phn_prev_set(phn_next_get(ph->root, offset), phn,
offset);
}
phn_prev_set(phn, ph->root, offset);
phn_next_set(ph->root, phn, offset);
ph->auxcount++;
unsigned nmerges = ffs_zu(ph->auxcount);
bool done = false;
for (unsigned i = 0; i < nmerges && !done; i++) {
done = ph_try_aux_merge_pair(ph, offset, cmp);
}
}
JEMALLOC_ALWAYS_INLINE void *
ph_remove_first(ph_t *ph, size_t offset, ph_cmp_t cmp) {
void *ret;
if (ph->root == NULL) {
return NULL;
}
ph_merge_aux(ph, offset, cmp);
ret = ph->root;
ph->root = ph_merge_children(ph->root, offset, cmp);
return ret;
}
JEMALLOC_ALWAYS_INLINE void
ph_remove(ph_t *ph, void *phn, size_t offset, ph_cmp_t cmp) {
void *replace;
void *parent;
if (ph->root == phn) {
/*
* We can delete from aux list without merging it, but we need
* to merge if we are dealing with the root node and it has
* children.
*/
if (phn_lchild_get(phn, offset) == NULL) {
ph->root = phn_next_get(phn, offset);
if (ph->root != NULL) {
phn_prev_set(ph->root, NULL, offset);
}
return;
}
ph_merge_aux(ph, offset, cmp);
if (ph->root == phn) {
ph->root = ph_merge_children(ph->root, offset, cmp);
return;
}
}
/* Get parent (if phn is leftmost child) before mutating. */
if ((parent = phn_prev_get(phn, offset)) != NULL) {
if (phn_lchild_get(parent, offset) != phn) {
parent = NULL;
}
}
/* Find a possible replacement node, and link to parent. */
replace = ph_merge_children(phn, offset, cmp);
/* Set next/prev for sibling linked list. */
if (replace != NULL) {
if (parent != NULL) {
phn_prev_set(replace, parent, offset);
phn_lchild_set(parent, replace, offset);
} else {
phn_prev_set(replace, phn_prev_get(phn, offset),
offset);
if (phn_prev_get(phn, offset) != NULL) {
phn_next_set(phn_prev_get(phn, offset), replace,
offset);
}
}
phn_next_set(replace, phn_next_get(phn, offset), offset);
if (phn_next_get(phn, offset) != NULL) {
phn_prev_set(phn_next_get(phn, offset), replace,
offset);
}
} else {
if (parent != NULL) {
void *next = phn_next_get(phn, offset);
phn_lchild_set(parent, next, offset);
if (next != NULL) {
phn_prev_set(next, parent, offset);
}
} else {
assert(phn_prev_get(phn, offset) != NULL);
phn_next_set(
phn_prev_get(phn, offset),
phn_next_get(phn, offset), offset);
}
if (phn_next_get(phn, offset) != NULL) {
phn_prev_set(
phn_next_get(phn, offset),
phn_prev_get(phn, offset), offset);
}
}
}
#define ph_structs(a_prefix, a_type) \
typedef struct { \
phn_link_t link; \
} a_prefix##_link_t; \
\
typedef struct { \
ph_t ph; \
} a_prefix##_t;
/*
* The ph_proto() macro generates function prototypes that correspond to the
* functions generated by an equivalently parameterized call to ph_gen().
*/
#define ph_proto(a_attr, a_prefix, a_type) \
\
a_attr void a_prefix##_new(a_prefix##_t *ph); \
a_attr bool a_prefix##_empty(a_prefix##_t *ph); \
a_attr a_type *a_prefix##_first(a_prefix##_t *ph); \
a_attr a_type *a_prefix##_any(a_prefix##_t *ph); \
a_attr void a_prefix##_insert(a_prefix##_t *ph, a_type *phn); \
a_attr a_type *a_prefix##_remove_first(a_prefix##_t *ph); \
a_attr void a_prefix##_remove(a_prefix##_t *ph, a_type *phn); \
a_attr a_type *a_prefix##_remove_any(a_prefix##_t *ph);
/* The ph_gen() macro generates a type-specific pairing heap implementation. */
#define ph_gen(a_attr, a_prefix, a_type, a_field, a_cmp) \
JEMALLOC_ALWAYS_INLINE int \
a_prefix##_ph_cmp(void *a, void *b) { \
return a_cmp((a_type *)a, (a_type *)b); \
} \
\
a_attr void \
a_prefix##_new(a_prefix##_t *ph) { \
ph_new(&ph->ph); \
} \
\
a_attr bool \
a_prefix##_empty(a_prefix##_t *ph) { \
return ph_empty(&ph->ph); \
} \
\
a_attr a_type * \
a_prefix##_first(a_prefix##_t *ph) { \
return ph_first(&ph->ph, offsetof(a_type, a_field), \
&a_prefix##_ph_cmp); \
} \
\
a_attr a_type * \
a_prefix##_any(a_prefix##_t *ph) { \
return ph_any(&ph->ph, offsetof(a_type, a_field)); \
} \
\
a_attr void \
a_prefix##_insert(a_prefix##_t *ph, a_type *phn) { \
ph_insert(&ph->ph, phn, offsetof(a_type, a_field), \
a_prefix##_ph_cmp); \
} \
\
a_attr a_type * \
a_prefix##_remove_first(a_prefix##_t *ph) { \
return ph_remove_first(&ph->ph, offsetof(a_type, a_field), \
a_prefix##_ph_cmp); \
} \
\
a_attr void \
a_prefix##_remove(a_prefix##_t *ph, a_type *phn) { \
ph_remove(&ph->ph, phn, offsetof(a_type, a_field), \
a_prefix##_ph_cmp); \
} \
\
a_attr a_type * \
a_prefix##_remove_any(a_prefix##_t *ph) { \
a_type *ret = a_prefix##_any(ph); \
if (ret != NULL) { \
a_prefix##_remove(ph, ret); \
} \
return ret; \
}
#endif /* JEMALLOC_INTERNAL_PH_H */