55e5cc1341
The largest small class, smallest large class, and largest large class may all be needed down fast paths; to avoid the risk of touching another cache line, we can make them available as constants.
315 lines
8.1 KiB
C
315 lines
8.1 KiB
C
#ifndef JEMALLOC_INTERNAL_SIZE_H
|
|
#define JEMALLOC_INTERNAL_SIZE_H
|
|
|
|
#include "jemalloc/internal/bit_util.h"
|
|
#include "jemalloc/internal/pages.h"
|
|
#include "jemalloc/internal/sc.h"
|
|
#include "jemalloc/internal/util.h"
|
|
|
|
/*
|
|
* sz module: Size computations.
|
|
*
|
|
* Some abbreviations used here:
|
|
* p: Page
|
|
* ind: Index
|
|
* s, sz: Size
|
|
* u: Usable size
|
|
* a: Aligned
|
|
*
|
|
* These are not always used completely consistently, but should be enough to
|
|
* interpret function names. E.g. sz_psz2ind converts page size to page size
|
|
* index; sz_sa2u converts a (size, alignment) allocation request to the usable
|
|
* size that would result from such an allocation.
|
|
*/
|
|
|
|
/*
|
|
* sz_pind2sz_tab encodes the same information as could be computed by
|
|
* sz_pind2sz_compute().
|
|
*/
|
|
extern size_t sz_pind2sz_tab[SC_NPSIZES_MAX + 1];
|
|
/*
|
|
* sz_index2size_tab encodes the same information as could be computed (at
|
|
* unacceptable cost in some code paths) by sz_index2size_compute().
|
|
*/
|
|
extern size_t sz_index2size_tab[SC_NSIZES];
|
|
/*
|
|
* sz_size2index_tab is a compact lookup table that rounds request sizes up to
|
|
* size classes. In order to reduce cache footprint, the table is compressed,
|
|
* and all accesses are via sz_size2index().
|
|
*/
|
|
extern uint8_t sz_size2index_tab[];
|
|
|
|
static const size_t sz_large_pad =
|
|
#ifdef JEMALLOC_CACHE_OBLIVIOUS
|
|
PAGE
|
|
#else
|
|
0
|
|
#endif
|
|
;
|
|
|
|
extern void sz_boot(const sc_data_t *sc_data);
|
|
|
|
JEMALLOC_ALWAYS_INLINE pszind_t
|
|
sz_psz2ind(size_t psz) {
|
|
if (unlikely(psz > SC_LARGE_MAXCLASS)) {
|
|
return sc_data_global.npsizes;
|
|
}
|
|
pszind_t x = lg_floor((psz<<1)-1);
|
|
pszind_t shift = (x < SC_LG_NGROUP + LG_PAGE) ?
|
|
0 : x - (SC_LG_NGROUP + LG_PAGE);
|
|
pszind_t grp = shift << SC_LG_NGROUP;
|
|
|
|
pszind_t lg_delta = (x < SC_LG_NGROUP + LG_PAGE + 1) ?
|
|
LG_PAGE : x - SC_LG_NGROUP - 1;
|
|
|
|
size_t delta_inverse_mask = ZU(-1) << lg_delta;
|
|
pszind_t mod = ((((psz-1) & delta_inverse_mask) >> lg_delta)) &
|
|
((ZU(1) << SC_LG_NGROUP) - 1);
|
|
|
|
pszind_t ind = grp + mod;
|
|
return ind;
|
|
}
|
|
|
|
static inline size_t
|
|
sz_pind2sz_compute(pszind_t pind) {
|
|
if (unlikely(pind == sc_data_global.npsizes)) {
|
|
return SC_LARGE_MAXCLASS + PAGE;
|
|
}
|
|
size_t grp = pind >> SC_LG_NGROUP;
|
|
size_t mod = pind & ((ZU(1) << SC_LG_NGROUP) - 1);
|
|
|
|
size_t grp_size_mask = ~((!!grp)-1);
|
|
size_t grp_size = ((ZU(1) << (LG_PAGE + (SC_LG_NGROUP-1))) << grp)
|
|
& grp_size_mask;
|
|
|
|
size_t shift = (grp == 0) ? 1 : grp;
|
|
size_t lg_delta = shift + (LG_PAGE-1);
|
|
size_t mod_size = (mod+1) << lg_delta;
|
|
|
|
size_t sz = grp_size + mod_size;
|
|
return sz;
|
|
}
|
|
|
|
static inline size_t
|
|
sz_pind2sz_lookup(pszind_t pind) {
|
|
size_t ret = (size_t)sz_pind2sz_tab[pind];
|
|
assert(ret == sz_pind2sz_compute(pind));
|
|
return ret;
|
|
}
|
|
|
|
static inline size_t
|
|
sz_pind2sz(pszind_t pind) {
|
|
assert(pind < sc_data_global.npsizes + 1);
|
|
return sz_pind2sz_lookup(pind);
|
|
}
|
|
|
|
static inline size_t
|
|
sz_psz2u(size_t psz) {
|
|
if (unlikely(psz > SC_LARGE_MAXCLASS)) {
|
|
return SC_LARGE_MAXCLASS + PAGE;
|
|
}
|
|
size_t x = lg_floor((psz<<1)-1);
|
|
size_t lg_delta = (x < SC_LG_NGROUP + LG_PAGE + 1) ?
|
|
LG_PAGE : x - SC_LG_NGROUP - 1;
|
|
size_t delta = ZU(1) << lg_delta;
|
|
size_t delta_mask = delta - 1;
|
|
size_t usize = (psz + delta_mask) & ~delta_mask;
|
|
return usize;
|
|
}
|
|
|
|
static inline szind_t
|
|
sz_size2index_compute(size_t size) {
|
|
if (unlikely(size > SC_LARGE_MAXCLASS)) {
|
|
return SC_NSIZES;
|
|
}
|
|
#if (SC_NTINY != 0)
|
|
if (size <= (ZU(1) << sc_data_global.lg_tiny_maxclass)) {
|
|
szind_t lg_tmin = sc_data_global.lg_tiny_maxclass
|
|
- sc_data_global.ntiny + 1;
|
|
szind_t lg_ceil = lg_floor(pow2_ceil_zu(size));
|
|
return (lg_ceil < lg_tmin ? 0 : lg_ceil - lg_tmin);
|
|
}
|
|
#endif
|
|
{
|
|
szind_t x = lg_floor((size<<1)-1);
|
|
szind_t shift = (x < SC_LG_NGROUP + LG_QUANTUM) ? 0 :
|
|
x - (SC_LG_NGROUP + LG_QUANTUM);
|
|
szind_t grp = shift << SC_LG_NGROUP;
|
|
|
|
szind_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1)
|
|
? LG_QUANTUM : x - SC_LG_NGROUP - 1;
|
|
|
|
size_t delta_inverse_mask = ZU(-1) << lg_delta;
|
|
szind_t mod = ((((size-1) & delta_inverse_mask) >> lg_delta)) &
|
|
((ZU(1) << SC_LG_NGROUP) - 1);
|
|
|
|
szind_t index = sc_data_global.ntiny + grp + mod;
|
|
return index;
|
|
}
|
|
}
|
|
|
|
JEMALLOC_ALWAYS_INLINE szind_t
|
|
sz_size2index_lookup(size_t size) {
|
|
assert(size <= SC_LOOKUP_MAXCLASS);
|
|
szind_t ret = (sz_size2index_tab[(size-1) >> SC_LG_TINY_MIN]);
|
|
assert(ret == sz_size2index_compute(size));
|
|
return ret;
|
|
}
|
|
|
|
JEMALLOC_ALWAYS_INLINE szind_t
|
|
sz_size2index(size_t size) {
|
|
assert(size > 0);
|
|
if (likely(size <= SC_LOOKUP_MAXCLASS)) {
|
|
return sz_size2index_lookup(size);
|
|
}
|
|
return sz_size2index_compute(size);
|
|
}
|
|
|
|
static inline size_t
|
|
sz_index2size_compute(szind_t index) {
|
|
#if (SC_NTINY > 0)
|
|
if (index < sc_data_global.ntiny) {
|
|
return (ZU(1) << (sc_data_global.lg_tiny_maxclass
|
|
- sc_data_global.ntiny + 1 + index));
|
|
}
|
|
#endif
|
|
{
|
|
size_t reduced_index = index - sc_data_global.ntiny;
|
|
size_t grp = reduced_index >> SC_LG_NGROUP;
|
|
size_t mod = reduced_index & ((ZU(1) << SC_LG_NGROUP) -
|
|
1);
|
|
|
|
size_t grp_size_mask = ~((!!grp)-1);
|
|
size_t grp_size = ((ZU(1) << (LG_QUANTUM +
|
|
(SC_LG_NGROUP-1))) << grp) & grp_size_mask;
|
|
|
|
size_t shift = (grp == 0) ? 1 : grp;
|
|
size_t lg_delta = shift + (LG_QUANTUM-1);
|
|
size_t mod_size = (mod+1) << lg_delta;
|
|
|
|
size_t usize = grp_size + mod_size;
|
|
return usize;
|
|
}
|
|
}
|
|
|
|
JEMALLOC_ALWAYS_INLINE size_t
|
|
sz_index2size_lookup(szind_t index) {
|
|
size_t ret = (size_t)sz_index2size_tab[index];
|
|
assert(ret == sz_index2size_compute(index));
|
|
return ret;
|
|
}
|
|
|
|
JEMALLOC_ALWAYS_INLINE size_t
|
|
sz_index2size(szind_t index) {
|
|
assert(index < SC_NSIZES);
|
|
return sz_index2size_lookup(index);
|
|
}
|
|
|
|
JEMALLOC_ALWAYS_INLINE size_t
|
|
sz_s2u_compute(size_t size) {
|
|
if (unlikely(size > SC_LARGE_MAXCLASS)) {
|
|
return 0;
|
|
}
|
|
#if (SC_NTINY > 0)
|
|
if (size <= (ZU(1) << sc_data_global.lg_tiny_maxclass)) {
|
|
size_t lg_tmin = sc_data_global.lg_tiny_maxclass
|
|
- sc_data_global.ntiny + 1;
|
|
size_t lg_ceil = lg_floor(pow2_ceil_zu(size));
|
|
return (lg_ceil < lg_tmin ? (ZU(1) << lg_tmin) :
|
|
(ZU(1) << lg_ceil));
|
|
}
|
|
#endif
|
|
{
|
|
size_t x = lg_floor((size<<1)-1);
|
|
size_t lg_delta = (x < SC_LG_NGROUP + LG_QUANTUM + 1)
|
|
? LG_QUANTUM : x - SC_LG_NGROUP - 1;
|
|
size_t delta = ZU(1) << lg_delta;
|
|
size_t delta_mask = delta - 1;
|
|
size_t usize = (size + delta_mask) & ~delta_mask;
|
|
return usize;
|
|
}
|
|
}
|
|
|
|
JEMALLOC_ALWAYS_INLINE size_t
|
|
sz_s2u_lookup(size_t size) {
|
|
size_t ret = sz_index2size_lookup(sz_size2index_lookup(size));
|
|
|
|
assert(ret == sz_s2u_compute(size));
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute usable size that would result from allocating an object with the
|
|
* specified size.
|
|
*/
|
|
JEMALLOC_ALWAYS_INLINE size_t
|
|
sz_s2u(size_t size) {
|
|
assert(size > 0);
|
|
if (likely(size <= SC_LOOKUP_MAXCLASS)) {
|
|
return sz_s2u_lookup(size);
|
|
}
|
|
return sz_s2u_compute(size);
|
|
}
|
|
|
|
/*
|
|
* Compute usable size that would result from allocating an object with the
|
|
* specified size and alignment.
|
|
*/
|
|
JEMALLOC_ALWAYS_INLINE size_t
|
|
sz_sa2u(size_t size, size_t alignment) {
|
|
size_t usize;
|
|
|
|
assert(alignment != 0 && ((alignment - 1) & alignment) == 0);
|
|
|
|
/* Try for a small size class. */
|
|
if (size <= SC_SMALL_MAXCLASS && alignment < PAGE) {
|
|
/*
|
|
* Round size up to the nearest multiple of alignment.
|
|
*
|
|
* This done, we can take advantage of the fact that for each
|
|
* small size class, every object is aligned at the smallest
|
|
* power of two that is non-zero in the base two representation
|
|
* of the size. For example:
|
|
*
|
|
* Size | Base 2 | Minimum alignment
|
|
* -----+----------+------------------
|
|
* 96 | 1100000 | 32
|
|
* 144 | 10100000 | 32
|
|
* 192 | 11000000 | 64
|
|
*/
|
|
usize = sz_s2u(ALIGNMENT_CEILING(size, alignment));
|
|
if (usize < SC_LARGE_MINCLASS) {
|
|
return usize;
|
|
}
|
|
}
|
|
|
|
/* Large size class. Beware of overflow. */
|
|
|
|
if (unlikely(alignment > SC_LARGE_MAXCLASS)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Make sure result is a large size class. */
|
|
if (size <= SC_LARGE_MINCLASS) {
|
|
usize = SC_LARGE_MINCLASS;
|
|
} else {
|
|
usize = sz_s2u(size);
|
|
if (usize < size) {
|
|
/* size_t overflow. */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the multi-page mapping that large_palloc() would need in
|
|
* order to guarantee the alignment.
|
|
*/
|
|
if (usize + sz_large_pad + PAGE_CEILING(alignment) - PAGE < usize) {
|
|
/* size_t overflow. */
|
|
return 0;
|
|
}
|
|
return usize;
|
|
}
|
|
|
|
#endif /* JEMALLOC_INTERNAL_SIZE_H */
|