server-skynet-source-3rd-je.../include/jemalloc/internal/thread_event.h
2020-05-12 09:16:16 -07:00

254 lines
7.7 KiB
C

#ifndef JEMALLOC_INTERNAL_THREAD_EVENT_H
#define JEMALLOC_INTERNAL_THREAD_EVENT_H
#include "jemalloc/internal/tsd.h"
/* "te" is short for "thread_event" */
/*
* Maximum threshold on thread_(de)allocated_next_event_fast, so that there is
* no need to check overflow in malloc fast path. (The allocation size in malloc
* fast path never exceeds SC_LOOKUP_MAXCLASS.)
*/
#define TE_NEXT_EVENT_FAST_MAX (UINT64_MAX - SC_LOOKUP_MAXCLASS + 1U)
/*
* The max interval helps make sure that malloc stays on the fast path in the
* common case, i.e. thread_allocated < thread_allocated_next_event_fast. When
* thread_allocated is within an event's distance to TE_NEXT_EVENT_FAST_MAX
* above, thread_allocated_next_event_fast is wrapped around and we fall back to
* the medium-fast path. The max interval makes sure that we're not staying on
* the fallback case for too long, even if there's no active event or if all
* active events have long wait times.
*/
#define TE_MAX_INTERVAL ((uint64_t)(4U << 20))
typedef struct te_ctx_s {
bool is_alloc;
uint64_t *current;
uint64_t *last_event;
uint64_t *next_event;
uint64_t *next_event_fast;
} te_ctx_t;
void te_assert_invariants_debug(tsd_t *tsd);
void te_event_trigger(tsd_t *tsd, te_ctx_t *ctx, bool delay_event);
void te_recompute_fast_threshold(tsd_t *tsd);
void tsd_te_init(tsd_t *tsd);
/*
* List of all events, in the following format:
* E(event, (condition), is_alloc_event)
*/
#define ITERATE_OVER_ALL_EVENTS \
E(tcache_gc, (TCACHE_GC_INCR_BYTES > 0), true) \
E(prof_sample, (config_prof && opt_prof), true) \
E(stats_interval, (opt_stats_interval >= 0), true) \
E(tcache_gc_dalloc, (TCACHE_GC_INCR_BYTES > 0), false)
#define E(event, condition_unused, is_alloc_event_unused) \
C(event##_event_wait)
/* List of all thread event counters. */
#define ITERATE_OVER_ALL_COUNTERS \
C(thread_allocated) \
C(thread_allocated_last_event) \
ITERATE_OVER_ALL_EVENTS \
C(prof_sample_last_event) \
C(stats_interval_last_event)
/* Getters directly wrap TSD getters. */
#define C(counter) \
JEMALLOC_ALWAYS_INLINE uint64_t \
counter##_get(tsd_t *tsd) { \
return tsd_##counter##_get(tsd); \
}
ITERATE_OVER_ALL_COUNTERS
#undef C
/*
* Setters call the TSD pointer getters rather than the TSD setters, so that
* the counters can be modified even when TSD state is reincarnated or
* minimal_initialized: if an event is triggered in such cases, we will
* temporarily delay the event and let it be immediately triggered at the next
* allocation call.
*/
#define C(counter) \
JEMALLOC_ALWAYS_INLINE void \
counter##_set(tsd_t *tsd, uint64_t v) { \
*tsd_##counter##p_get(tsd) = v; \
}
ITERATE_OVER_ALL_COUNTERS
#undef C
/*
* For generating _event_wait getter / setter functions for each individual
* event.
*/
#undef E
/*
* The malloc and free fastpath getters -- use the unsafe getters since tsd may
* be non-nominal, in which case the fast_threshold will be set to 0. This
* allows checking for events and tsd non-nominal in a single branch.
*
* Note that these can only be used on the fastpath.
*/
JEMALLOC_ALWAYS_INLINE void
te_malloc_fastpath_ctx(tsd_t *tsd, uint64_t *allocated, uint64_t *threshold) {
*allocated = *tsd_thread_allocatedp_get_unsafe(tsd);
*threshold = *tsd_thread_allocated_next_event_fastp_get_unsafe(tsd);
assert(*threshold <= TE_NEXT_EVENT_FAST_MAX);
}
JEMALLOC_ALWAYS_INLINE void
te_free_fastpath_ctx(tsd_t *tsd, uint64_t *deallocated, uint64_t *threshold,
bool size_hint) {
if (!size_hint) {
*deallocated = tsd_thread_deallocated_get(tsd);
*threshold = tsd_thread_deallocated_next_event_fast_get(tsd);
} else {
/* Unsafe getters since this may happen before tsd_init. */
*deallocated = *tsd_thread_deallocatedp_get_unsafe(tsd);
*threshold =
*tsd_thread_deallocated_next_event_fastp_get_unsafe(tsd);
}
assert(*threshold <= TE_NEXT_EVENT_FAST_MAX);
}
JEMALLOC_ALWAYS_INLINE bool
te_ctx_is_alloc(te_ctx_t *ctx) {
return ctx->is_alloc;
}
JEMALLOC_ALWAYS_INLINE uint64_t
te_ctx_current_bytes_get(te_ctx_t *ctx) {
return *ctx->current;
}
JEMALLOC_ALWAYS_INLINE void
te_ctx_current_bytes_set(te_ctx_t *ctx, uint64_t v) {
*ctx->current = v;
}
JEMALLOC_ALWAYS_INLINE uint64_t
te_ctx_last_event_get(te_ctx_t *ctx) {
return *ctx->last_event;
}
JEMALLOC_ALWAYS_INLINE void
te_ctx_last_event_set(te_ctx_t *ctx, uint64_t v) {
*ctx->last_event = v;
}
/* Below 3 for next_event_fast. */
JEMALLOC_ALWAYS_INLINE uint64_t
te_ctx_next_event_fast_get(te_ctx_t *ctx) {
uint64_t v = *ctx->next_event_fast;
assert(v <= TE_NEXT_EVENT_FAST_MAX);
return v;
}
JEMALLOC_ALWAYS_INLINE void
te_ctx_next_event_fast_set(te_ctx_t *ctx, uint64_t v) {
assert(v <= TE_NEXT_EVENT_FAST_MAX);
*ctx->next_event_fast = v;
}
JEMALLOC_ALWAYS_INLINE void
te_next_event_fast_set_non_nominal(tsd_t *tsd) {
/*
* Set the fast thresholds to zero when tsd is non-nominal. Use the
* unsafe getter as this may get called during tsd init and clean up.
*/
*tsd_thread_allocated_next_event_fastp_get_unsafe(tsd) = 0;
*tsd_thread_deallocated_next_event_fastp_get_unsafe(tsd) = 0;
}
/* For next_event. Setter also updates the fast threshold. */
JEMALLOC_ALWAYS_INLINE uint64_t
te_ctx_next_event_get(te_ctx_t *ctx) {
return *ctx->next_event;
}
JEMALLOC_ALWAYS_INLINE void
te_ctx_next_event_set(tsd_t *tsd, te_ctx_t *ctx, uint64_t v) {
*ctx->next_event = v;
te_recompute_fast_threshold(tsd);
}
/*
* The function checks in debug mode whether the thread event counters are in
* a consistent state, which forms the invariants before and after each round
* of thread event handling that we can rely on and need to promise.
* The invariants are only temporarily violated in the middle of:
* (a) event_advance() if an event is triggered (the te_event_trigger() call
* at the end will restore the invariants), or
* (b) te_##event##_event_update() (the te_event_update() call at the
* end will restore the invariants).
*/
JEMALLOC_ALWAYS_INLINE void
te_assert_invariants(tsd_t *tsd) {
if (config_debug) {
te_assert_invariants_debug(tsd);
}
}
JEMALLOC_ALWAYS_INLINE void
te_ctx_get(tsd_t *tsd, te_ctx_t *ctx, bool is_alloc) {
ctx->is_alloc = is_alloc;
if (is_alloc) {
ctx->current = tsd_thread_allocatedp_get(tsd);
ctx->last_event = tsd_thread_allocated_last_eventp_get(tsd);
ctx->next_event = tsd_thread_allocated_next_eventp_get(tsd);
ctx->next_event_fast =
tsd_thread_allocated_next_event_fastp_get(tsd);
} else {
ctx->current = tsd_thread_deallocatedp_get(tsd);
ctx->last_event = tsd_thread_deallocated_last_eventp_get(tsd);
ctx->next_event = tsd_thread_deallocated_next_eventp_get(tsd);
ctx->next_event_fast =
tsd_thread_deallocated_next_event_fastp_get(tsd);
}
}
JEMALLOC_ALWAYS_INLINE bool
te_prof_sample_event_lookahead(tsd_t *tsd, size_t usize) {
assert(usize == sz_s2u(usize));
return tsd_thread_allocated_get(tsd) + usize -
tsd_thread_allocated_last_event_get(tsd) >=
tsd_prof_sample_event_wait_get(tsd);
}
JEMALLOC_ALWAYS_INLINE void
te_event_advance(tsd_t *tsd, size_t usize, bool is_alloc) {
te_assert_invariants(tsd);
te_ctx_t ctx;
te_ctx_get(tsd, &ctx, is_alloc);
uint64_t bytes_before = te_ctx_current_bytes_get(&ctx);
te_ctx_current_bytes_set(&ctx, bytes_before + usize);
/* The subtraction is intentionally susceptible to underflow. */
if (likely(usize < te_ctx_next_event_get(&ctx) - bytes_before)) {
te_assert_invariants(tsd);
} else {
te_event_trigger(tsd, &ctx, false);
}
}
JEMALLOC_ALWAYS_INLINE void
thread_dalloc_event(tsd_t *tsd, size_t usize) {
te_event_advance(tsd, usize, false);
}
JEMALLOC_ALWAYS_INLINE void
thread_alloc_event(tsd_t *tsd, size_t usize) {
te_event_advance(tsd, usize, true);
}
#endif /* JEMALLOC_INTERNAL_THREAD_EVENT_H */