server-skynet-source-3rd-je.../src/thread_event.c
2020-02-04 13:07:05 -08:00

412 lines
13 KiB
C

#define JEMALLOC_THREAD_EVENT_C_
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/thread_event.h"
/* TSD event init function signatures. */
#define E(event, condition_unused, is_alloc_event_unused) \
static void te_tsd_##event##_event_init(tsd_t *tsd);
ITERATE_OVER_ALL_EVENTS
#undef E
/* Event handler function signatures. */
#define E(event, condition_unused, is_alloc_event_unused) \
static void te_##event##_event_handler(tsd_t *tsd);
ITERATE_OVER_ALL_EVENTS
#undef E
/* (Re)Init functions. */
static void
te_tsd_tcache_gc_event_init(tsd_t *tsd) {
assert(TCACHE_GC_INCR_BYTES > 0);
te_tcache_gc_event_update(tsd, TCACHE_GC_INCR_BYTES);
}
static void
te_tsd_tcache_gc_dalloc_event_init(tsd_t *tsd) {
assert(TCACHE_GC_INCR_BYTES > 0);
te_tcache_gc_dalloc_event_update(tsd, TCACHE_GC_INCR_BYTES);
}
static void
te_tsd_prof_sample_event_init(tsd_t *tsd) {
assert(config_prof && opt_prof);
prof_sample_threshold_update(tsd);
}
static void
te_tsd_stats_interval_event_init(tsd_t *tsd) {
assert(opt_stats_interval >= 0);
uint64_t interval = stats_interval_accum_batch_size();
te_stats_interval_event_update(tsd, interval);
}
/* Handler functions. */
static void
tcache_gc_event(tsd_t *tsd) {
assert(TCACHE_GC_INCR_BYTES > 0);
tcache_t *tcache = tcache_get(tsd);
if (tcache != NULL) {
tcache_event_hard(tsd, tcache);
}
}
static void
te_tcache_gc_event_handler(tsd_t *tsd) {
assert(tcache_gc_event_wait_get(tsd) == 0U);
te_tsd_tcache_gc_event_init(tsd);
tcache_gc_event(tsd);
}
static void
te_tcache_gc_dalloc_event_handler(tsd_t *tsd) {
assert(tcache_gc_dalloc_event_wait_get(tsd) == 0U);
te_tsd_tcache_gc_dalloc_event_init(tsd);
tcache_gc_event(tsd);
}
static void
te_prof_sample_event_handler(tsd_t *tsd) {
assert(config_prof && opt_prof);
assert(prof_sample_event_wait_get(tsd) == 0U);
uint64_t last_event = thread_allocated_last_event_get(tsd);
uint64_t last_sample_event = prof_sample_last_event_get(tsd);
prof_sample_last_event_set(tsd, last_event);
if (prof_idump_accum(tsd_tsdn(tsd), last_event - last_sample_event)) {
prof_idump(tsd_tsdn(tsd));
}
if (!prof_active_get_unlocked()) {
/*
* If prof_active is off, we reset prof_sample_event_wait to be
* the sample interval when it drops to 0, so that there won't
* be excessive routings to the slow path, and that when
* prof_active is turned on later, the counting for sampling
* can immediately resume as normal.
*/
te_prof_sample_event_update(tsd,
(uint64_t)(1 << lg_prof_sample));
}
}
static void
te_stats_interval_event_handler(tsd_t *tsd) {
assert(opt_stats_interval >= 0);
assert(stats_interval_event_wait_get(tsd) == 0U);
uint64_t last_event = thread_allocated_last_event_get(tsd);
uint64_t last_stats_event = stats_interval_last_event_get(tsd);
stats_interval_last_event_set(tsd, last_event);
if (stats_interval_accum(tsd, last_event - last_stats_event)) {
je_malloc_stats_print(NULL, NULL, opt_stats_interval_opts);
}
te_tsd_stats_interval_event_init(tsd);
}
/* Per event facilities done. */
static bool
te_ctx_has_active_events(te_ctx_t *ctx) {
assert(config_debug);
#define E(event, condition, alloc_event) \
if (condition && alloc_event == ctx->is_alloc) { \
return true; \
}
ITERATE_OVER_ALL_EVENTS
#undef E
return false;
}
static uint64_t
te_next_event_compute(tsd_t *tsd, bool is_alloc) {
uint64_t wait = TE_MAX_START_WAIT;
#define E(event, condition, alloc_event) \
if (is_alloc == alloc_event && condition) { \
uint64_t event_wait = \
event##_event_wait_get(tsd); \
assert(event_wait <= TE_MAX_START_WAIT); \
if (event_wait > 0U && event_wait < wait) { \
wait = event_wait; \
} \
}
ITERATE_OVER_ALL_EVENTS
#undef E
assert(wait <= TE_MAX_START_WAIT);
return wait;
}
static void
te_assert_invariants_impl(tsd_t *tsd, te_ctx_t *ctx) {
uint64_t current_bytes = te_ctx_current_bytes_get(ctx);
uint64_t last_event = te_ctx_last_event_get(ctx);
uint64_t next_event = te_ctx_next_event_get(ctx);
uint64_t next_event_fast = te_ctx_next_event_fast_get(ctx);
assert(last_event != next_event);
if (next_event > TE_NEXT_EVENT_FAST_MAX || !tsd_fast(tsd)) {
assert(next_event_fast == 0U);
} else {
assert(next_event_fast == next_event);
}
/* The subtraction is intentionally susceptible to underflow. */
uint64_t interval = next_event - last_event;
/* The subtraction is intentionally susceptible to underflow. */
assert(current_bytes - last_event < interval);
uint64_t min_wait = te_next_event_compute(tsd, te_ctx_is_alloc(ctx));
/*
* next_event should have been pushed up only except when no event is
* on and the TSD is just initialized. The last_event == 0U guard
* below is stronger than needed, but having an exactly accurate guard
* is more complicated to implement.
*/
assert((!te_ctx_has_active_events(ctx) && last_event == 0U) ||
interval == min_wait ||
(interval < min_wait && interval == TE_MAX_INTERVAL));
}
void
te_assert_invariants_debug(tsd_t *tsd) {
te_ctx_t ctx;
te_ctx_get(tsd, &ctx, true);
te_assert_invariants_impl(tsd, &ctx);
te_ctx_get(tsd, &ctx, false);
te_assert_invariants_impl(tsd, &ctx);
}
/*
* Synchronization around the fast threshold in tsd --
* There are two threads to consider in the synchronization here:
* - The owner of the tsd being updated by a slow path change
* - The remote thread, doing that slow path change.
*
* As a design constraint, we want to ensure that a slow-path transition cannot
* be ignored for arbitrarily long, and that if the remote thread causes a
* slow-path transition and then communicates with the owner thread that it has
* occurred, then the owner will go down the slow path on the next allocator
* operation (so that we don't want to just wait until the owner hits its slow
* path reset condition on its own).
*
* Here's our strategy to do that:
*
* The remote thread will update the slow-path stores to TSD variables, issue a
* SEQ_CST fence, and then update the TSD next_event_fast counter. The owner
* thread will update next_event_fast, issue an SEQ_CST fence, and then check
* its TSD to see if it's on the slow path.
* This is fairly straightforward when 64-bit atomics are supported. Assume that
* the remote fence is sandwiched between two owner fences in the reset pathway.
* The case where there is no preceding or trailing owner fence (i.e. because
* the owner thread is near the beginning or end of its life) can be analyzed
* similarly. The owner store to next_event_fast preceding the earlier owner
* fence will be earlier in coherence order than the remote store to it, so that
* the owner thread will go down the slow path once the store becomes visible to
* it, which is no later than the time of the second fence.
* The case where we don't support 64-bit atomics is trickier, since word
* tearing is possible. We'll repeat the same analysis, and look at the two
* owner fences sandwiching the remote fence. The next_event_fast stores done
* alongside the earlier owner fence cannot overwrite any of the remote stores
* (since they precede the earlier owner fence in sb, which precedes the remote
* fence in sc, which precedes the remote stores in sb). After the second owner
* fence there will be a re-check of the slow-path variables anyways, so the
* "owner will notice that it's on the slow path eventually" guarantee is
* satisfied. To make sure that the out-of-band-messaging constraint is as well,
* note that either the message passing is sequenced before the second owner
* fence (in which case the remote stores happen before the second set of owner
* stores, so malloc sees a value of zero for next_event_fast and goes down the
* slow path), or it is not (in which case the owner sees the tsd slow-path
* writes on its previous update). This leaves open the possibility that the
* remote thread will (at some arbitrary point in the future) zero out one half
* of the owner thread's next_event_fast, but that's always safe (it just sends
* it down the slow path earlier).
*/
static void
te_ctx_next_event_fast_update(te_ctx_t *ctx) {
uint64_t next_event = te_ctx_next_event_get(ctx);
uint64_t next_event_fast = (next_event <= TE_NEXT_EVENT_FAST_MAX) ?
next_event : 0U;
te_ctx_next_event_fast_set(ctx, next_event_fast);
}
void
te_recompute_fast_threshold(tsd_t *tsd) {
if (tsd_state_get(tsd) != tsd_state_nominal) {
/* Check first because this is also called on purgatory. */
te_next_event_fast_set_non_nominal(tsd);
return;
}
te_ctx_t ctx;
te_ctx_get(tsd, &ctx, true);
te_ctx_next_event_fast_update(&ctx);
te_ctx_get(tsd, &ctx, false);
te_ctx_next_event_fast_update(&ctx);
atomic_fence(ATOMIC_SEQ_CST);
if (tsd_state_get(tsd) != tsd_state_nominal) {
te_next_event_fast_set_non_nominal(tsd);
}
}
static void
te_adjust_thresholds_helper(tsd_t *tsd, te_ctx_t *ctx,
uint64_t wait) {
assert(wait <= TE_MAX_START_WAIT);
uint64_t next_event = te_ctx_last_event_get(ctx) + (wait <=
TE_MAX_INTERVAL ? wait : TE_MAX_INTERVAL);
te_ctx_next_event_set(tsd, ctx, next_event);
}
static uint64_t
te_batch_accum(tsd_t *tsd, uint64_t accumbytes, bool is_alloc,
bool allow_event_trigger) {
uint64_t wait = TE_MAX_START_WAIT;
#define E(event, condition, alloc_event) \
if (is_alloc == alloc_event && condition) { \
uint64_t event_wait = event##_event_wait_get(tsd); \
assert(event_wait <= TE_MAX_START_WAIT); \
if (event_wait > accumbytes) { \
event_wait -= accumbytes; \
} else { \
event_wait = 0U; \
if (!allow_event_trigger) { \
event_wait = TE_MIN_START_WAIT; \
} \
} \
assert(event_wait <= TE_MAX_START_WAIT); \
event##_event_wait_set(tsd, event_wait); \
/* \
* If there is a single event, then the remaining wait \
* time may become zero, and we rely on either the \
* event handler or a te_event_update() call later \
* to properly set next_event; if there are multiple \
* events, then here we can get the minimum remaining \
* wait time to the next already set event. \
*/ \
if (event_wait > 0U && event_wait < wait) { \
wait = event_wait; \
} \
}
ITERATE_OVER_ALL_EVENTS
#undef E
assert(wait <= TE_MAX_START_WAIT);
return wait;
}
void
te_event_trigger(tsd_t *tsd, te_ctx_t *ctx, bool delay_event) {
/* usize has already been added to thread_allocated. */
uint64_t bytes_after = te_ctx_current_bytes_get(ctx);
/* The subtraction is intentionally susceptible to underflow. */
uint64_t accumbytes = bytes_after - te_ctx_last_event_get(ctx);
te_ctx_last_event_set(ctx, bytes_after);
bool allow_event_trigger = !delay_event && tsd_nominal(tsd) &&
tsd_reentrancy_level_get(tsd) == 0;
bool is_alloc = ctx->is_alloc;
uint64_t wait = te_batch_accum(tsd, accumbytes, is_alloc,
allow_event_trigger);
te_adjust_thresholds_helper(tsd, ctx, wait);
te_assert_invariants(tsd);
#define E(event, condition, alloc_event) \
if (is_alloc == alloc_event && condition && \
event##_event_wait_get(tsd) == 0U) { \
assert(allow_event_trigger); \
te_##event##_event_handler(tsd); \
}
ITERATE_OVER_ALL_EVENTS
#undef E
te_assert_invariants(tsd);
}
void
te_alloc_rollback(tsd_t *tsd, size_t diff) {
te_assert_invariants(tsd);
if (diff == 0U) {
return;
}
/* Rollback happens only on alloc events. */
te_ctx_t ctx;
te_ctx_get(tsd, &ctx, true);
uint64_t thread_allocated = te_ctx_current_bytes_get(&ctx);
/* The subtraction is intentionally susceptible to underflow. */
uint64_t thread_allocated_rollback = thread_allocated - diff;
te_ctx_current_bytes_set(&ctx, thread_allocated_rollback);
uint64_t last_event = te_ctx_last_event_get(&ctx);
/* Both subtractions are intentionally susceptible to underflow. */
if (thread_allocated_rollback - last_event <=
thread_allocated - last_event) {
te_assert_invariants(tsd);
return;
}
te_ctx_last_event_set(&ctx, thread_allocated_rollback);
/* The subtraction is intentionally susceptible to underflow. */
uint64_t wait_diff = last_event - thread_allocated_rollback;
assert(wait_diff <= diff);
#define E(event, condition, alloc_event) \
if (alloc_event == true && condition) { \
uint64_t event_wait = event##_event_wait_get(tsd); \
assert(event_wait <= TE_MAX_START_WAIT); \
if (event_wait > 0U) { \
if (wait_diff > TE_MAX_START_WAIT - event_wait) {\
event_wait = TE_MAX_START_WAIT; \
} else { \
event_wait += wait_diff; \
} \
assert(event_wait <= TE_MAX_START_WAIT); \
event##_event_wait_set(tsd, event_wait); \
} \
}
ITERATE_OVER_ALL_EVENTS
#undef E
te_event_update(tsd, true);
}
void
te_event_update(tsd_t *tsd, bool is_alloc) {
te_ctx_t ctx;
te_ctx_get(tsd, &ctx, is_alloc);
uint64_t wait = te_next_event_compute(tsd, is_alloc);
te_adjust_thresholds_helper(tsd, &ctx, wait);
uint64_t last_event = te_ctx_last_event_get(&ctx);
/* Both subtractions are intentionally susceptible to underflow. */
if (te_ctx_current_bytes_get(&ctx) - last_event >=
te_ctx_next_event_get(&ctx) - last_event) {
te_event_trigger(tsd, &ctx, true);
} else {
te_assert_invariants(tsd);
}
}
void tsd_te_init(tsd_t *tsd) {
/* Make sure no overflow for the bytes accumulated on event_trigger. */
assert(TE_MAX_INTERVAL <= UINT64_MAX - SC_LARGE_MAXCLASS + 1);
#define E(event, condition, is_alloc_event_unused) \
if (condition) { \
te_tsd_##event##_event_init(tsd); \
}
ITERATE_OVER_ALL_EVENTS
#undef E
}