server-skynet-source-3rd-je.../src/pa.c
David Goldblatt 93b99dd140 Extent: Stop passing an edata_cache everywhere.
We already pass the pa_shard_t around everywhere; we can just use that.
2020-04-10 13:12:47 -07:00

429 lines
13 KiB
C

#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
static void
pa_nactive_add(pa_shard_t *shard, size_t add_pages) {
atomic_fetch_add_zu(&shard->nactive, add_pages, ATOMIC_RELAXED);
}
static void
pa_nactive_sub(pa_shard_t *shard, size_t sub_pages) {
assert(atomic_load_zu(&shard->nactive, ATOMIC_RELAXED) >= sub_pages);
atomic_fetch_sub_zu(&shard->nactive, sub_pages, ATOMIC_RELAXED);
}
bool
pa_shard_init(tsdn_t *tsdn, pa_shard_t *shard, emap_t *emap, base_t *base,
unsigned ind, pa_shard_stats_t *stats, malloc_mutex_t *stats_mtx,
nstime_t *cur_time, ssize_t dirty_decay_ms, ssize_t muzzy_decay_ms) {
/* This will change eventually, but for now it should hold. */
assert(base_ind_get(base) == ind);
/*
* Delay coalescing for dirty extents despite the disruptive effect on
* memory layout for best-fit extent allocation, since cached extents
* are likely to be reused soon after deallocation, and the cost of
* merging/splitting extents is non-trivial.
*/
if (ecache_init(tsdn, &shard->ecache_dirty, extent_state_dirty, ind,
/* delay_coalesce */ true)) {
return true;
}
/*
* Coalesce muzzy extents immediately, because operations on them are in
* the critical path much less often than for dirty extents.
*/
if (ecache_init(tsdn, &shard->ecache_muzzy, extent_state_muzzy, ind,
/* delay_coalesce */ false)) {
return true;
}
/*
* Coalesce retained extents immediately, in part because they will
* never be evicted (and therefore there's no opportunity for delayed
* coalescing), but also because operations on retained extents are not
* in the critical path.
*/
if (ecache_init(tsdn, &shard->ecache_retained, extent_state_retained,
ind, /* delay_coalesce */ false)) {
return true;
}
if (edata_cache_init(&shard->edata_cache, base)) {
return true;
}
if (ecache_grow_init(tsdn, &shard->ecache_grow)) {
return true;
}
if (decay_init(&shard->decay_dirty, cur_time, dirty_decay_ms)) {
return true;
}
if (decay_init(&shard->decay_muzzy, cur_time, muzzy_decay_ms)) {
return true;
}
atomic_store_zu(&shard->extent_sn_next, 0, ATOMIC_RELAXED);
atomic_store_zu(&shard->nactive, 0, ATOMIC_RELAXED);
shard->stats_mtx = stats_mtx;
shard->stats = stats;
memset(shard->stats, 0, sizeof(*shard->stats));
shard->emap = emap;
shard->base = base;
return false;
}
void
pa_shard_reset(pa_shard_t *shard) {
atomic_store_zu(&shard->nactive, 0, ATOMIC_RELAXED);
}
void
pa_shard_destroy_retained(tsdn_t *tsdn, pa_shard_t *shard) {
assert(ecache_npages_get(&shard->ecache_dirty) == 0);
assert(ecache_npages_get(&shard->ecache_muzzy) == 0);
/*
* Iterate over the retained extents and destroy them. This gives the
* extent allocator underlying the extent hooks an opportunity to unmap
* all retained memory without having to keep its own metadata
* structures. In practice, virtual memory for dss-allocated extents is
* leaked here, so best practice is to avoid dss for arenas to be
* destroyed, or provide custom extent hooks that track retained
* dss-based extents for later reuse.
*/
ehooks_t *ehooks = pa_shard_ehooks_get(shard);
edata_t *edata;
while ((edata = ecache_evict(tsdn, shard, ehooks,
&shard->ecache_retained, 0)) != NULL) {
extent_destroy_wrapper(tsdn, shard, ehooks, edata);
}
}
size_t
pa_shard_extent_sn_next(pa_shard_t *shard) {
return atomic_fetch_add_zu(&shard->extent_sn_next, 1, ATOMIC_RELAXED);
}
static bool
pa_shard_may_have_muzzy(pa_shard_t *shard) {
return pa_shard_muzzy_decay_ms_get(shard) != 0;
}
edata_t *
pa_alloc(tsdn_t *tsdn, pa_shard_t *shard, size_t size, size_t alignment,
bool slab, szind_t szind, bool zero) {
witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
WITNESS_RANK_CORE, 0);
size_t mapped_add = 0;
ehooks_t *ehooks = pa_shard_ehooks_get(shard);
edata_t *edata = ecache_alloc(tsdn, shard, ehooks,
&shard->ecache_dirty, NULL, size, alignment, slab, szind, zero);
if (edata == NULL && pa_shard_may_have_muzzy(shard)) {
edata = ecache_alloc(tsdn, shard, ehooks, &shard->ecache_muzzy,
NULL, size, alignment, slab, szind, zero);
}
if (edata == NULL) {
edata = ecache_alloc_grow(tsdn, shard, ehooks,
&shard->ecache_retained, NULL, size, alignment, slab,
szind, zero);
mapped_add = size;
}
if (edata != NULL) {
pa_nactive_add(shard, size >> LG_PAGE);
if (config_stats && mapped_add > 0) {
atomic_fetch_add_zu(&shard->stats->pa_mapped,
mapped_add, ATOMIC_RELAXED);
}
}
return edata;
}
bool
pa_expand(tsdn_t *tsdn, pa_shard_t *shard, edata_t *edata, size_t old_size,
size_t new_size, szind_t szind, bool slab, bool zero) {
assert(new_size > old_size);
assert(edata_size_get(edata) == old_size);
assert((new_size & PAGE_MASK) == 0);
ehooks_t *ehooks = pa_shard_ehooks_get(shard);
void *trail_begin = edata_past_get(edata);
size_t expand_amount = new_size - old_size;
size_t mapped_add = 0;
if (ehooks_merge_will_fail(ehooks)) {
return true;
}
edata_t *trail = ecache_alloc(tsdn, shard, ehooks, &shard->ecache_dirty,
trail_begin, expand_amount, PAGE, /* slab */ false, SC_NSIZES,
zero);
if (trail == NULL) {
trail = ecache_alloc(tsdn, shard, ehooks, &shard->ecache_muzzy,
trail_begin, expand_amount, PAGE, /* slab */ false,
SC_NSIZES, zero);
}
if (trail == NULL) {
trail = ecache_alloc_grow(tsdn, shard, ehooks,
&shard->ecache_retained, trail_begin, expand_amount, PAGE,
/* slab */ false, SC_NSIZES, zero);
mapped_add = expand_amount;
}
if (trail == NULL) {
return true;
}
if (extent_merge_wrapper(tsdn, shard, ehooks, edata, trail)) {
extent_dalloc_wrapper(tsdn, shard, ehooks, trail);
return true;
}
if (config_stats && mapped_add > 0) {
atomic_fetch_add_zu(&shard->stats->pa_mapped, mapped_add,
ATOMIC_RELAXED);
}
pa_nactive_add(shard, expand_amount >> LG_PAGE);
edata_szind_set(edata, szind);
emap_remap(tsdn, shard->emap, edata, szind, slab);
return false;
}
bool
pa_shrink(tsdn_t *tsdn, pa_shard_t *shard, edata_t *edata, size_t old_size,
size_t new_size, szind_t szind, bool slab, bool *generated_dirty) {
assert(new_size < old_size);
assert(edata_size_get(edata) == old_size);
assert((new_size & PAGE_MASK) == 0);
size_t shrink_amount = old_size - new_size;
ehooks_t *ehooks = pa_shard_ehooks_get(shard);
*generated_dirty = false;
if (ehooks_split_will_fail(ehooks)) {
return true;
}
edata_t *trail = extent_split_wrapper(tsdn, shard, ehooks, edata,
new_size, szind, slab, shrink_amount, SC_NSIZES, false);
if (trail == NULL) {
return true;
}
pa_nactive_sub(shard, shrink_amount >> LG_PAGE);
ecache_dalloc(tsdn, shard, ehooks, &shard->ecache_dirty, trail);
*generated_dirty = true;
return false;
}
void
pa_dalloc(tsdn_t *tsdn, pa_shard_t *shard, edata_t *edata,
bool *generated_dirty) {
pa_nactive_sub(shard, edata_size_get(edata) >> LG_PAGE);
ehooks_t *ehooks = pa_shard_ehooks_get(shard);
ecache_dalloc(tsdn, shard, ehooks, &shard->ecache_dirty, edata);
*generated_dirty = true;
}
static size_t
pa_stash_decayed(tsdn_t *tsdn, pa_shard_t *shard, ecache_t *ecache,
size_t npages_limit, size_t npages_decay_max, edata_list_t *result) {
witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
WITNESS_RANK_CORE, 0);
ehooks_t *ehooks = pa_shard_ehooks_get(shard);
/* Stash extents according to npages_limit. */
size_t nstashed = 0;
while (nstashed < npages_decay_max) {
edata_t *edata = ecache_evict(tsdn, shard, ehooks, ecache,
npages_limit);
if (edata == NULL) {
break;
}
edata_list_append(result, edata);
nstashed += edata_size_get(edata) >> LG_PAGE;
}
return nstashed;
}
static size_t
pa_decay_stashed(tsdn_t *tsdn, pa_shard_t *shard, decay_t *decay,
pa_shard_decay_stats_t *decay_stats, ecache_t *ecache, bool fully_decay,
edata_list_t *decay_extents) {
bool err;
size_t nmadvise = 0;
size_t nunmapped = 0;
size_t npurged = 0;
ehooks_t *ehooks = pa_shard_ehooks_get(shard);
bool try_muzzy = !fully_decay && pa_shard_may_have_muzzy(shard);
for (edata_t *edata = edata_list_first(decay_extents); edata !=
NULL; edata = edata_list_first(decay_extents)) {
edata_list_remove(decay_extents, edata);
size_t size = edata_size_get(edata);
size_t npages = size >> LG_PAGE;
nmadvise++;
npurged += npages;
switch (ecache->state) {
case extent_state_active:
not_reached();
case extent_state_dirty:
if (try_muzzy) {
err = extent_purge_lazy_wrapper(tsdn, ehooks,
edata, /* offset */ 0, size);
if (!err) {
ecache_dalloc(tsdn, shard, ehooks,
&shard->ecache_muzzy, edata);
break;
}
}
JEMALLOC_FALLTHROUGH;
case extent_state_muzzy:
extent_dalloc_wrapper(tsdn, shard, ehooks, edata);
nunmapped += npages;
break;
case extent_state_retained:
default:
not_reached();
}
}
if (config_stats) {
LOCKEDINT_MTX_LOCK(tsdn, *shard->stats_mtx);
locked_inc_u64(tsdn, LOCKEDINT_MTX(*shard->stats_mtx),
&decay_stats->npurge, 1);
locked_inc_u64(tsdn, LOCKEDINT_MTX(*shard->stats_mtx),
&decay_stats->nmadvise, nmadvise);
locked_inc_u64(tsdn, LOCKEDINT_MTX(*shard->stats_mtx),
&decay_stats->purged, npurged);
LOCKEDINT_MTX_UNLOCK(tsdn, *shard->stats_mtx);
atomic_fetch_sub_zu(&shard->stats->pa_mapped,
nunmapped << LG_PAGE, ATOMIC_RELAXED);
}
return npurged;
}
/*
* npages_limit: Decay at most npages_decay_max pages without violating the
* invariant: (ecache_npages_get(ecache) >= npages_limit). We need an upper
* bound on number of pages in order to prevent unbounded growth (namely in
* stashed), otherwise unbounded new pages could be added to extents during the
* current decay run, so that the purging thread never finishes.
*/
static void
pa_decay_to_limit(tsdn_t *tsdn, pa_shard_t *shard, decay_t *decay,
pa_shard_decay_stats_t *decay_stats, ecache_t *ecache, bool fully_decay,
size_t npages_limit, size_t npages_decay_max) {
witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
WITNESS_RANK_CORE, 1);
if (decay->purging || npages_decay_max == 0) {
return;
}
decay->purging = true;
malloc_mutex_unlock(tsdn, &decay->mtx);
edata_list_t decay_extents;
edata_list_init(&decay_extents);
size_t npurge = pa_stash_decayed(tsdn, shard, ecache, npages_limit,
npages_decay_max, &decay_extents);
if (npurge != 0) {
size_t npurged = pa_decay_stashed(tsdn, shard, decay,
decay_stats, ecache, fully_decay, &decay_extents);
assert(npurged == npurge);
}
malloc_mutex_lock(tsdn, &decay->mtx);
decay->purging = false;
}
void
pa_decay_all(tsdn_t *tsdn, pa_shard_t *shard, decay_t *decay,
pa_shard_decay_stats_t *decay_stats, ecache_t *ecache, bool fully_decay) {
malloc_mutex_assert_owner(tsdn, &decay->mtx);
pa_decay_to_limit(tsdn, shard, decay, decay_stats, ecache, fully_decay,
/* npages_limit */ 0, ecache_npages_get(ecache));
}
static void
pa_decay_try_purge(tsdn_t *tsdn, pa_shard_t *shard, decay_t *decay,
pa_shard_decay_stats_t *decay_stats, ecache_t *ecache,
size_t current_npages, size_t npages_limit) {
if (current_npages > npages_limit) {
pa_decay_to_limit(tsdn, shard, decay, decay_stats, ecache,
/* fully_decay */ false, npages_limit,
current_npages - npages_limit);
}
}
bool
pa_maybe_decay_purge(tsdn_t *tsdn, pa_shard_t *shard, decay_t *decay,
pa_shard_decay_stats_t *decay_stats, ecache_t *ecache,
pa_decay_purge_setting_t decay_purge_setting) {
malloc_mutex_assert_owner(tsdn, &decay->mtx);
/* Purge all or nothing if the option is disabled. */
ssize_t decay_ms = decay_ms_read(decay);
if (decay_ms <= 0) {
if (decay_ms == 0) {
pa_decay_to_limit(tsdn, shard, decay, decay_stats,
ecache, /* fully_decay */ false,
/* npages_limit */ 0, ecache_npages_get(ecache));
}
return false;
}
/*
* If the deadline has been reached, advance to the current epoch and
* purge to the new limit if necessary. Note that dirty pages created
* during the current epoch are not subject to purge until a future
* epoch, so as a result purging only happens during epoch advances, or
* being triggered by background threads (scheduled event).
*/
nstime_t time;
nstime_init_update(&time);
size_t npages_current = ecache_npages_get(ecache);
bool epoch_advanced = decay_maybe_advance_epoch(decay, &time,
npages_current);
if (decay_purge_setting == PA_DECAY_PURGE_ALWAYS
|| (epoch_advanced && decay_purge_setting
== PA_DECAY_PURGE_ON_EPOCH_ADVANCE)) {
size_t npages_limit = decay_npages_limit_get(decay);
pa_decay_try_purge(tsdn, shard, decay, decay_stats, ecache,
npages_current, npages_limit);
}
return epoch_advanced;
}
bool
pa_shard_retain_grow_limit_get_set(tsdn_t *tsdn, pa_shard_t *shard,
size_t *old_limit, size_t *new_limit) {
pszind_t new_ind JEMALLOC_CC_SILENCE_INIT(0);
if (new_limit != NULL) {
size_t limit = *new_limit;
/* Grow no more than the new limit. */
if ((new_ind = sz_psz2ind(limit + 1) - 1) >= SC_NPSIZES) {
return true;
}
}
malloc_mutex_lock(tsdn, &shard->ecache_grow.mtx);
if (old_limit != NULL) {
*old_limit = sz_pind2sz(shard->ecache_grow.limit);
}
if (new_limit != NULL) {
shard->ecache_grow.limit = new_ind;
}
malloc_mutex_unlock(tsdn, &shard->ecache_grow.mtx);
return false;
}