This allows leaf elements to differ in size from internal node elements. In principle it would be more correct to use a different type for each level of the tree, but due to implementation details related to atomic operations, we use casts anyway, thus counteracting the value of additional type correctness. Furthermore, such a scheme would require function code generation (via cpp macros), as well as either unwieldy type names for leaves or type aliases, e.g. typedef struct rtree_elm_d2_s rtree_leaf_elm_t; This alternate strategy would be more correct, and with less code duplication, but probably not worth the complexity.
jemalloc is a general purpose malloc(3) implementation that emphasizes fragmentation avoidance and scalable concurrency support. jemalloc first came into use as the FreeBSD libc allocator in 2005, and since then it has found its way into numerous applications that rely on its predictable behavior. In 2010 jemalloc development efforts broadened to include developer support features such as heap profiling and extensive monitoring/tuning hooks. Modern jemalloc releases continue to be integrated back into FreeBSD, and therefore versatility remains critical. Ongoing development efforts trend toward making jemalloc among the best allocators for a broad range of demanding applications, and eliminating/mitigating weaknesses that have practical repercussions for real world applications. The COPYING file contains copyright and licensing information. The INSTALL file contains information on how to configure, build, and install jemalloc. The ChangeLog file contains a brief summary of changes for each release. URL: http://jemalloc.net/
Description
Languages
C
87.4%
Perl
6.1%
M4
3.6%
Shell
1%
Makefile
0.9%
Other
1%