server-skynet-source-3rd-je.../include/jemalloc/internal/edata.h
2020-07-08 13:20:59 -07:00

637 lines
19 KiB
C

#ifndef JEMALLOC_INTERNAL_EDATA_H
#define JEMALLOC_INTERNAL_EDATA_H
#include "jemalloc/internal/atomic.h"
#include "jemalloc/internal/bin_info.h"
#include "jemalloc/internal/bit_util.h"
#include "jemalloc/internal/nstime.h"
#include "jemalloc/internal/ph.h"
#include "jemalloc/internal/ql.h"
#include "jemalloc/internal/sc.h"
#include "jemalloc/internal/slab_data.h"
#include "jemalloc/internal/sz.h"
#include "jemalloc/internal/typed_list.h"
enum extent_state_e {
extent_state_active = 0,
extent_state_dirty = 1,
extent_state_muzzy = 2,
extent_state_retained = 3
};
typedef enum extent_state_e extent_state_t;
enum extent_head_state_e {
EXTENT_NOT_HEAD,
EXTENT_IS_HEAD /* Only relevant for Windows && opt.retain. */
};
typedef enum extent_head_state_e extent_head_state_t;
struct e_prof_info_s {
/* Time when this was allocated. */
nstime_t e_prof_alloc_time;
/* Points to a prof_tctx_t. */
atomic_p_t e_prof_tctx;
/*
* Points to a prof_recent_t for the allocation; NULL
* means the recent allocation record no longer exists.
* Protected by prof_recent_alloc_mtx.
*/
atomic_p_t e_prof_recent_alloc;
};
typedef struct e_prof_info_s e_prof_info_t;
/*
* The information about a particular edata that lives in an emap. Space is
* more previous there (the information, plus the edata pointer, has to live in
* a 64-bit word if we want to enable a packed representation.
*
* There are two things that are special about the information here:
* - It's quicker to access. You have one fewer pointer hop, since finding the
* edata_t associated with an item always requires accessing the rtree leaf in
* which this data is stored.
* - It can be read unsynchronized, and without worrying about lifetime issues.
*/
typedef struct edata_map_info_s edata_map_info_t;
struct edata_map_info_s {
bool slab;
szind_t szind;
};
/* Extent (span of pages). Use accessor functions for e_* fields. */
typedef struct edata_s edata_t;
typedef ph(edata_t) edata_tree_t;
typedef ph(edata_t) edata_heap_t;
struct edata_s {
/*
* Bitfield containing several fields:
*
* a: arena_ind
* b: slab
* c: committed
* r: ranged
* z: zeroed
* t: state
* i: szind
* f: nfree
* s: bin_shard
* n: sn
*
* nnnnnnnn ... nnnnnnss ssssffff ffffffii iiiiiitt zrcbaaaa aaaaaaaa
*
* arena_ind: Arena from which this extent came, or all 1 bits if
* unassociated.
*
* slab: The slab flag indicates whether the extent is used for a slab
* of small regions. This helps differentiate small size classes,
* and it indicates whether interior pointers can be looked up via
* iealloc().
*
* committed: The committed flag indicates whether physical memory is
* committed to the extent, whether explicitly or implicitly
* as on a system that overcommits and satisfies physical
* memory needs on demand via soft page faults.
*
* ranged: Whether or not this extent is currently owned by the range
* allocator. This may be false even if the extent originally
* came from a range allocator; this indicates its *current*
* owner, not its original owner.
*
* zeroed: The zeroed flag is used by extent recycling code to track
* whether memory is zero-filled.
*
* state: The state flag is an extent_state_t.
*
* szind: The szind flag indicates usable size class index for
* allocations residing in this extent, regardless of whether the
* extent is a slab. Extent size and usable size often differ
* even for non-slabs, either due to sz_large_pad or promotion of
* sampled small regions.
*
* nfree: Number of free regions in slab.
*
* bin_shard: the shard of the bin from which this extent came.
*
* sn: Serial number (potentially non-unique).
*
* Serial numbers may wrap around if !opt_retain, but as long as
* comparison functions fall back on address comparison for equal
* serial numbers, stable (if imperfect) ordering is maintained.
*
* Serial numbers may not be unique even in the absence of
* wrap-around, e.g. when splitting an extent and assigning the same
* serial number to both resulting adjacent extents.
*/
uint64_t e_bits;
#define MASK(CURRENT_FIELD_WIDTH, CURRENT_FIELD_SHIFT) ((((((uint64_t)0x1U) << (CURRENT_FIELD_WIDTH)) - 1)) << (CURRENT_FIELD_SHIFT))
#define EDATA_BITS_ARENA_WIDTH MALLOCX_ARENA_BITS
#define EDATA_BITS_ARENA_SHIFT 0
#define EDATA_BITS_ARENA_MASK MASK(EDATA_BITS_ARENA_WIDTH, EDATA_BITS_ARENA_SHIFT)
#define EDATA_BITS_SLAB_WIDTH 1
#define EDATA_BITS_SLAB_SHIFT (EDATA_BITS_ARENA_WIDTH + EDATA_BITS_ARENA_SHIFT)
#define EDATA_BITS_SLAB_MASK MASK(EDATA_BITS_SLAB_WIDTH, EDATA_BITS_SLAB_SHIFT)
#define EDATA_BITS_COMMITTED_WIDTH 1
#define EDATA_BITS_COMMITTED_SHIFT (EDATA_BITS_SLAB_WIDTH + EDATA_BITS_SLAB_SHIFT)
#define EDATA_BITS_COMMITTED_MASK MASK(EDATA_BITS_COMMITTED_WIDTH, EDATA_BITS_COMMITTED_SHIFT)
#define EDATA_BITS_RANGED_WIDTH 1
#define EDATA_BITS_RANGED_SHIFT (EDATA_BITS_COMMITTED_WIDTH + EDATA_BITS_COMMITTED_SHIFT)
#define EDATA_BITS_RANGED_MASK MASK(EDATA_BITS_RANGED_WIDTH, EDATA_BITS_RANGED_SHIFT)
#define EDATA_BITS_ZEROED_WIDTH 1
#define EDATA_BITS_ZEROED_SHIFT (EDATA_BITS_RANGED_WIDTH + EDATA_BITS_RANGED_SHIFT)
#define EDATA_BITS_ZEROED_MASK MASK(EDATA_BITS_ZEROED_WIDTH, EDATA_BITS_ZEROED_SHIFT)
#define EDATA_BITS_STATE_WIDTH 2
#define EDATA_BITS_STATE_SHIFT (EDATA_BITS_ZEROED_WIDTH + EDATA_BITS_ZEROED_SHIFT)
#define EDATA_BITS_STATE_MASK MASK(EDATA_BITS_STATE_WIDTH, EDATA_BITS_STATE_SHIFT)
#define EDATA_BITS_SZIND_WIDTH LG_CEIL(SC_NSIZES)
#define EDATA_BITS_SZIND_SHIFT (EDATA_BITS_STATE_WIDTH + EDATA_BITS_STATE_SHIFT)
#define EDATA_BITS_SZIND_MASK MASK(EDATA_BITS_SZIND_WIDTH, EDATA_BITS_SZIND_SHIFT)
#define EDATA_BITS_NFREE_WIDTH (SC_LG_SLAB_MAXREGS + 1)
#define EDATA_BITS_NFREE_SHIFT (EDATA_BITS_SZIND_WIDTH + EDATA_BITS_SZIND_SHIFT)
#define EDATA_BITS_NFREE_MASK MASK(EDATA_BITS_NFREE_WIDTH, EDATA_BITS_NFREE_SHIFT)
#define EDATA_BITS_BINSHARD_WIDTH 6
#define EDATA_BITS_BINSHARD_SHIFT (EDATA_BITS_NFREE_WIDTH + EDATA_BITS_NFREE_SHIFT)
#define EDATA_BITS_BINSHARD_MASK MASK(EDATA_BITS_BINSHARD_WIDTH, EDATA_BITS_BINSHARD_SHIFT)
#define EDATA_BITS_IS_HEAD_WIDTH 1
#define EDATA_BITS_IS_HEAD_SHIFT (EDATA_BITS_BINSHARD_WIDTH + EDATA_BITS_BINSHARD_SHIFT)
#define EDATA_BITS_IS_HEAD_MASK MASK(EDATA_BITS_IS_HEAD_WIDTH, EDATA_BITS_IS_HEAD_SHIFT)
#define EDATA_BITS_SN_SHIFT (EDATA_BITS_IS_HEAD_WIDTH + EDATA_BITS_IS_HEAD_SHIFT)
#define EDATA_BITS_SN_MASK (UINT64_MAX << EDATA_BITS_SN_SHIFT)
/* Pointer to the extent that this structure is responsible for. */
void *e_addr;
union {
/*
* Extent size and serial number associated with the extent
* structure (different than the serial number for the extent at
* e_addr).
*
* ssssssss [...] ssssssss ssssnnnn nnnnnnnn
*/
size_t e_size_esn;
#define EDATA_SIZE_MASK ((size_t)~(PAGE-1))
#define EDATA_ESN_MASK ((size_t)PAGE-1)
/* Base extent size, which may not be a multiple of PAGE. */
size_t e_bsize;
};
/*
* Reserved for hugepages -- once that allocator is more settled, we
* might be able to claw some of this back. Until then, don't get any
* funny ideas about using the space we just freed up to keep some other
* bit of metadata around. That kind of thinking can be hazardous to
* your health.
*
* This keeps the size of an edata_t at exactly 128 bytes on
* architectures with 8-byte pointers and 4k pages.
*/
void *reserved1, *reserved2;
union {
/*
* List linkage used when the edata_t is active; either in
* arena's large allocations or bin_t's slabs_full.
*/
ql_elm(edata_t) ql_link_active;
/*
* Pairing heap linkage. Used whenever the extent is inactive
* (in the page allocators), or when it is active and in
* slabs_nonfull, or when the edata_t is unassociated with an
* extent and sitting in an edata_cache.
*/
phn(edata_t) ph_link;
};
union {
/*
* List linkage used when the extent is inactive:
* - Stashed dirty extents
* - Ecache LRU functionality.
*/
ql_elm(edata_t) ql_link_inactive;
/* Small region slab metadata. */
slab_data_t e_slab_data;
/* Profiling data, used for large objects. */
e_prof_info_t e_prof_info;
};
};
TYPED_LIST(edata_list_active, edata_t, ql_link_active)
TYPED_LIST(edata_list_inactive, edata_t, ql_link_inactive)
static inline unsigned
edata_arena_ind_get(const edata_t *edata) {
unsigned arena_ind = (unsigned)((edata->e_bits &
EDATA_BITS_ARENA_MASK) >> EDATA_BITS_ARENA_SHIFT);
assert(arena_ind < MALLOCX_ARENA_LIMIT);
return arena_ind;
}
static inline szind_t
edata_szind_get_maybe_invalid(const edata_t *edata) {
szind_t szind = (szind_t)((edata->e_bits & EDATA_BITS_SZIND_MASK) >>
EDATA_BITS_SZIND_SHIFT);
assert(szind <= SC_NSIZES);
return szind;
}
static inline szind_t
edata_szind_get(const edata_t *edata) {
szind_t szind = edata_szind_get_maybe_invalid(edata);
assert(szind < SC_NSIZES); /* Never call when "invalid". */
return szind;
}
static inline size_t
edata_usize_get(const edata_t *edata) {
return sz_index2size(edata_szind_get(edata));
}
static inline unsigned
edata_binshard_get(const edata_t *edata) {
unsigned binshard = (unsigned)((edata->e_bits &
EDATA_BITS_BINSHARD_MASK) >> EDATA_BITS_BINSHARD_SHIFT);
assert(binshard < bin_infos[edata_szind_get(edata)].n_shards);
return binshard;
}
static inline size_t
edata_sn_get(const edata_t *edata) {
return (size_t)((edata->e_bits & EDATA_BITS_SN_MASK) >>
EDATA_BITS_SN_SHIFT);
}
static inline extent_state_t
edata_state_get(const edata_t *edata) {
return (extent_state_t)((edata->e_bits & EDATA_BITS_STATE_MASK) >>
EDATA_BITS_STATE_SHIFT);
}
static inline bool
edata_zeroed_get(const edata_t *edata) {
return (bool)((edata->e_bits & EDATA_BITS_ZEROED_MASK) >>
EDATA_BITS_ZEROED_SHIFT);
}
static inline bool
edata_committed_get(const edata_t *edata) {
return (bool)((edata->e_bits & EDATA_BITS_COMMITTED_MASK) >>
EDATA_BITS_COMMITTED_SHIFT);
}
static inline bool
edata_ranged_get(const edata_t *edata) {
return (bool)((edata->e_bits & EDATA_BITS_RANGED_MASK) >>
EDATA_BITS_RANGED_SHIFT);
}
static inline bool
edata_slab_get(const edata_t *edata) {
return (bool)((edata->e_bits & EDATA_BITS_SLAB_MASK) >>
EDATA_BITS_SLAB_SHIFT);
}
static inline unsigned
edata_nfree_get(const edata_t *edata) {
assert(edata_slab_get(edata));
return (unsigned)((edata->e_bits & EDATA_BITS_NFREE_MASK) >>
EDATA_BITS_NFREE_SHIFT);
}
static inline void *
edata_base_get(const edata_t *edata) {
assert(edata->e_addr == PAGE_ADDR2BASE(edata->e_addr) ||
!edata_slab_get(edata));
return PAGE_ADDR2BASE(edata->e_addr);
}
static inline void *
edata_addr_get(const edata_t *edata) {
assert(edata->e_addr == PAGE_ADDR2BASE(edata->e_addr) ||
!edata_slab_get(edata));
return edata->e_addr;
}
static inline size_t
edata_size_get(const edata_t *edata) {
return (edata->e_size_esn & EDATA_SIZE_MASK);
}
static inline size_t
edata_esn_get(const edata_t *edata) {
return (edata->e_size_esn & EDATA_ESN_MASK);
}
static inline size_t
edata_bsize_get(const edata_t *edata) {
return edata->e_bsize;
}
static inline void *
edata_before_get(const edata_t *edata) {
return (void *)((uintptr_t)edata_base_get(edata) - PAGE);
}
static inline void *
edata_last_get(const edata_t *edata) {
return (void *)((uintptr_t)edata_base_get(edata) +
edata_size_get(edata) - PAGE);
}
static inline void *
edata_past_get(const edata_t *edata) {
return (void *)((uintptr_t)edata_base_get(edata) +
edata_size_get(edata));
}
static inline slab_data_t *
edata_slab_data_get(edata_t *edata) {
assert(edata_slab_get(edata));
return &edata->e_slab_data;
}
static inline const slab_data_t *
edata_slab_data_get_const(const edata_t *edata) {
assert(edata_slab_get(edata));
return &edata->e_slab_data;
}
static inline prof_tctx_t *
edata_prof_tctx_get(const edata_t *edata) {
return (prof_tctx_t *)atomic_load_p(&edata->e_prof_info.e_prof_tctx,
ATOMIC_ACQUIRE);
}
static inline const nstime_t *
edata_prof_alloc_time_get(const edata_t *edata) {
return &edata->e_prof_info.e_prof_alloc_time;
}
static inline prof_recent_t *
edata_prof_recent_alloc_get_dont_call_directly(const edata_t *edata) {
return (prof_recent_t *)atomic_load_p(
&edata->e_prof_info.e_prof_recent_alloc, ATOMIC_RELAXED);
}
static inline void
edata_arena_ind_set(edata_t *edata, unsigned arena_ind) {
edata->e_bits = (edata->e_bits & ~EDATA_BITS_ARENA_MASK) |
((uint64_t)arena_ind << EDATA_BITS_ARENA_SHIFT);
}
static inline void
edata_binshard_set(edata_t *edata, unsigned binshard) {
/* The assertion assumes szind is set already. */
assert(binshard < bin_infos[edata_szind_get(edata)].n_shards);
edata->e_bits = (edata->e_bits & ~EDATA_BITS_BINSHARD_MASK) |
((uint64_t)binshard << EDATA_BITS_BINSHARD_SHIFT);
}
static inline void
edata_addr_set(edata_t *edata, void *addr) {
edata->e_addr = addr;
}
static inline void
edata_size_set(edata_t *edata, size_t size) {
assert((size & ~EDATA_SIZE_MASK) == 0);
edata->e_size_esn = size | (edata->e_size_esn & ~EDATA_SIZE_MASK);
}
static inline void
edata_esn_set(edata_t *edata, size_t esn) {
edata->e_size_esn = (edata->e_size_esn & ~EDATA_ESN_MASK) | (esn &
EDATA_ESN_MASK);
}
static inline void
edata_bsize_set(edata_t *edata, size_t bsize) {
edata->e_bsize = bsize;
}
static inline void
edata_szind_set(edata_t *edata, szind_t szind) {
assert(szind <= SC_NSIZES); /* SC_NSIZES means "invalid". */
edata->e_bits = (edata->e_bits & ~EDATA_BITS_SZIND_MASK) |
((uint64_t)szind << EDATA_BITS_SZIND_SHIFT);
}
static inline void
edata_nfree_set(edata_t *edata, unsigned nfree) {
assert(edata_slab_get(edata));
edata->e_bits = (edata->e_bits & ~EDATA_BITS_NFREE_MASK) |
((uint64_t)nfree << EDATA_BITS_NFREE_SHIFT);
}
static inline void
edata_nfree_binshard_set(edata_t *edata, unsigned nfree, unsigned binshard) {
/* The assertion assumes szind is set already. */
assert(binshard < bin_infos[edata_szind_get(edata)].n_shards);
edata->e_bits = (edata->e_bits &
(~EDATA_BITS_NFREE_MASK & ~EDATA_BITS_BINSHARD_MASK)) |
((uint64_t)binshard << EDATA_BITS_BINSHARD_SHIFT) |
((uint64_t)nfree << EDATA_BITS_NFREE_SHIFT);
}
static inline void
edata_nfree_inc(edata_t *edata) {
assert(edata_slab_get(edata));
edata->e_bits += ((uint64_t)1U << EDATA_BITS_NFREE_SHIFT);
}
static inline void
edata_nfree_dec(edata_t *edata) {
assert(edata_slab_get(edata));
edata->e_bits -= ((uint64_t)1U << EDATA_BITS_NFREE_SHIFT);
}
static inline void
edata_nfree_sub(edata_t *edata, uint64_t n) {
assert(edata_slab_get(edata));
edata->e_bits -= (n << EDATA_BITS_NFREE_SHIFT);
}
static inline void
edata_sn_set(edata_t *edata, size_t sn) {
edata->e_bits = (edata->e_bits & ~EDATA_BITS_SN_MASK) |
((uint64_t)sn << EDATA_BITS_SN_SHIFT);
}
static inline void
edata_state_set(edata_t *edata, extent_state_t state) {
edata->e_bits = (edata->e_bits & ~EDATA_BITS_STATE_MASK) |
((uint64_t)state << EDATA_BITS_STATE_SHIFT);
}
static inline void
edata_zeroed_set(edata_t *edata, bool zeroed) {
edata->e_bits = (edata->e_bits & ~EDATA_BITS_ZEROED_MASK) |
((uint64_t)zeroed << EDATA_BITS_ZEROED_SHIFT);
}
static inline void
edata_committed_set(edata_t *edata, bool committed) {
edata->e_bits = (edata->e_bits & ~EDATA_BITS_COMMITTED_MASK) |
((uint64_t)committed << EDATA_BITS_COMMITTED_SHIFT);
}
static inline void
edata_ranged_set(edata_t *edata, bool ranged) {
edata->e_bits = (edata->e_bits & ~EDATA_BITS_RANGED_MASK) |
((uint64_t)ranged << EDATA_BITS_RANGED_SHIFT);
}
static inline void
edata_slab_set(edata_t *edata, bool slab) {
edata->e_bits = (edata->e_bits & ~EDATA_BITS_SLAB_MASK) |
((uint64_t)slab << EDATA_BITS_SLAB_SHIFT);
}
static inline void
edata_prof_tctx_set(edata_t *edata, prof_tctx_t *tctx) {
atomic_store_p(&edata->e_prof_info.e_prof_tctx, tctx, ATOMIC_RELEASE);
}
static inline void
edata_prof_alloc_time_set(edata_t *edata, nstime_t *t) {
nstime_copy(&edata->e_prof_info.e_prof_alloc_time, t);
}
static inline void
edata_prof_recent_alloc_set_dont_call_directly(edata_t *edata,
prof_recent_t *recent_alloc) {
atomic_store_p(&edata->e_prof_info.e_prof_recent_alloc, recent_alloc,
ATOMIC_RELAXED);
}
static inline bool
edata_is_head_get(edata_t *edata) {
return (bool)((edata->e_bits & EDATA_BITS_IS_HEAD_MASK) >>
EDATA_BITS_IS_HEAD_SHIFT);
}
static inline void
edata_is_head_set(edata_t *edata, bool is_head) {
edata->e_bits = (edata->e_bits & ~EDATA_BITS_IS_HEAD_MASK) |
((uint64_t)is_head << EDATA_BITS_IS_HEAD_SHIFT);
}
/*
* Because this function is implemented as a sequence of bitfield modifications,
* even though each individual bit is properly initialized, we technically read
* uninitialized data within it. This is mostly fine, since most callers get
* their edatas from zeroing sources, but callers who make stack edata_ts need
* to manually zero them.
*/
static inline void
edata_init(edata_t *edata, unsigned arena_ind, void *addr, size_t size,
bool slab, szind_t szind, size_t sn, extent_state_t state, bool zeroed,
bool committed, bool ranged, extent_head_state_t is_head) {
assert(addr == PAGE_ADDR2BASE(addr) || !slab);
assert(ranged == false);
edata_arena_ind_set(edata, arena_ind);
edata_addr_set(edata, addr);
edata_size_set(edata, size);
edata_slab_set(edata, slab);
edata_szind_set(edata, szind);
edata_sn_set(edata, sn);
edata_state_set(edata, state);
edata_zeroed_set(edata, zeroed);
edata_committed_set(edata, committed);
edata_ranged_set(edata, ranged);
edata_is_head_set(edata, is_head == EXTENT_IS_HEAD);
if (config_prof) {
edata_prof_tctx_set(edata, NULL);
}
}
static inline void
edata_binit(edata_t *edata, void *addr, size_t bsize, size_t sn) {
edata_arena_ind_set(edata, (1U << MALLOCX_ARENA_BITS) - 1);
edata_addr_set(edata, addr);
edata_bsize_set(edata, bsize);
edata_slab_set(edata, false);
edata_szind_set(edata, SC_NSIZES);
edata_sn_set(edata, sn);
edata_state_set(edata, extent_state_active);
edata_zeroed_set(edata, true);
edata_committed_set(edata, true);
edata_ranged_set(edata, false);
}
static inline int
edata_sn_comp(const edata_t *a, const edata_t *b) {
size_t a_sn = edata_sn_get(a);
size_t b_sn = edata_sn_get(b);
return (a_sn > b_sn) - (a_sn < b_sn);
}
static inline int
edata_esn_comp(const edata_t *a, const edata_t *b) {
size_t a_esn = edata_esn_get(a);
size_t b_esn = edata_esn_get(b);
return (a_esn > b_esn) - (a_esn < b_esn);
}
static inline int
edata_ad_comp(const edata_t *a, const edata_t *b) {
uintptr_t a_addr = (uintptr_t)edata_addr_get(a);
uintptr_t b_addr = (uintptr_t)edata_addr_get(b);
return (a_addr > b_addr) - (a_addr < b_addr);
}
static inline int
edata_ead_comp(const edata_t *a, const edata_t *b) {
uintptr_t a_eaddr = (uintptr_t)a;
uintptr_t b_eaddr = (uintptr_t)b;
return (a_eaddr > b_eaddr) - (a_eaddr < b_eaddr);
}
static inline int
edata_snad_comp(const edata_t *a, const edata_t *b) {
int ret;
ret = edata_sn_comp(a, b);
if (ret != 0) {
return ret;
}
ret = edata_ad_comp(a, b);
return ret;
}
static inline int
edata_esnead_comp(const edata_t *a, const edata_t *b) {
int ret;
ret = edata_esn_comp(a, b);
if (ret != 0) {
return ret;
}
ret = edata_ead_comp(a, b);
return ret;
}
ph_proto(, edata_avail_, edata_tree_t, edata_t)
ph_proto(, edata_heap_, edata_heap_t, edata_t)
#endif /* JEMALLOC_INTERNAL_EDATA_H */