server-skynet-source-3rd-je.../test/unit/fxp.c
David Goldblatt bdb7307ff2 fxp: Add FXP_INIT_PERCENT
This lets us specify fxp values easily in source.
2021-02-04 20:58:31 -08:00

395 lines
11 KiB
C

#include "test/jemalloc_test.h"
#include "jemalloc/internal/fxp.h"
static double
fxp2double(fxp_t a) {
double intpart = (double)(a >> 16);
double fracpart = (double)(a & ((1U << 16) - 1)) / (1U << 16);
return intpart + fracpart;
}
/* Is a close to b? */
static bool
double_close(double a, double b) {
/*
* Our implementation doesn't try for precision. Correspondingly, don't
* enforce it too strenuously here; accept values that are close in
* either relative or absolute terms.
*/
return fabs(a - b) < 0.01 || fabs(a - b) / a < 0.01;
}
static bool
fxp_close(fxp_t a, fxp_t b) {
return double_close(fxp2double(a), fxp2double(b));
}
static fxp_t
xparse_fxp(const char *str) {
fxp_t result;
bool err = fxp_parse(&result, str, NULL);
assert_false(err, "Invalid fxp string: %s", str);
return result;
}
static void
expect_parse_accurate(const char *str, const char *parse_str) {
double true_val = strtod(str, NULL);
fxp_t fxp_val;
char *end;
bool err = fxp_parse(&fxp_val, parse_str, &end);
expect_false(err, "Unexpected parse failure");
expect_ptr_eq(parse_str + strlen(str), end,
"Didn't parse whole string");
expect_true(double_close(fxp2double(fxp_val), true_val),
"Misparsed %s", str);
}
static void
parse_valid_trial(const char *str) {
/* The value it parses should be correct. */
expect_parse_accurate(str, str);
char buf[100];
snprintf(buf, sizeof(buf), "%swith_some_trailing_text", str);
expect_parse_accurate(str, buf);
snprintf(buf, sizeof(buf), "%s with a space", str);
expect_parse_accurate(str, buf);
snprintf(buf, sizeof(buf), "%s,in_a_malloc_conf_string:1", str);
expect_parse_accurate(str, buf);
}
TEST_BEGIN(test_parse_valid) {
parse_valid_trial("0");
parse_valid_trial("1");
parse_valid_trial("2");
parse_valid_trial("100");
parse_valid_trial("345");
parse_valid_trial("00000000123");
parse_valid_trial("00000000987");
parse_valid_trial("0.0");
parse_valid_trial("0.00000000000456456456");
parse_valid_trial("100.00000000000456456456");
parse_valid_trial("123.1");
parse_valid_trial("123.01");
parse_valid_trial("123.001");
parse_valid_trial("123.0001");
parse_valid_trial("123.00001");
parse_valid_trial("123.000001");
parse_valid_trial("123.0000001");
parse_valid_trial(".0");
parse_valid_trial(".1");
parse_valid_trial(".01");
parse_valid_trial(".001");
parse_valid_trial(".0001");
parse_valid_trial(".00001");
parse_valid_trial(".000001");
parse_valid_trial(".1");
parse_valid_trial(".10");
parse_valid_trial(".100");
parse_valid_trial(".1000");
parse_valid_trial(".100000");
}
TEST_END
static void
expect_parse_failure(const char *str) {
fxp_t result = FXP_INIT_INT(333);
char *end = (void *)0x123;
bool err = fxp_parse(&result, str, &end);
expect_true(err, "Expected a parse error on: %s", str);
expect_ptr_eq((void *)0x123, end,
"Parse error shouldn't change results");
expect_u32_eq(result, FXP_INIT_INT(333),
"Parse error shouldn't change results");
}
TEST_BEGIN(test_parse_invalid) {
expect_parse_failure("123.");
expect_parse_failure("3.a");
expect_parse_failure(".a");
expect_parse_failure("a.1");
expect_parse_failure("a");
/* A valid string, but one that overflows. */
expect_parse_failure("123456789");
expect_parse_failure("0000000123456789");
expect_parse_failure("1000000");
}
TEST_END
static void
expect_init_percent(unsigned percent, const char *str) {
fxp_t result_init = FXP_INIT_PERCENT(percent);
fxp_t result_parse = xparse_fxp(str);
expect_u32_eq(result_init, result_parse,
"Expect representations of FXP_INIT_PERCENT(%u) and "
"fxp_parse(\"%s\") to be equal; got %x and %x",
percent, str, result_init, result_parse);
}
/*
* Every other test uses either parsing or FXP_INIT_INT; it gets tested in those
* ways. We need a one-off for the percent-based initialization, though.
*/
TEST_BEGIN(test_init_percent) {
expect_init_percent(100, "1");
expect_init_percent(75, ".75");
expect_init_percent(1, ".01");
expect_init_percent(50, ".5");
}
TEST_END
static void
expect_add(const char *astr, const char *bstr, const char* resultstr) {
fxp_t a = xparse_fxp(astr);
fxp_t b = xparse_fxp(bstr);
fxp_t result = xparse_fxp(resultstr);
expect_true(fxp_close(fxp_add(a, b), result),
"Expected %s + %s == %s", astr, bstr, resultstr);
}
TEST_BEGIN(test_add_simple) {
expect_add("0", "0", "0");
expect_add("0", "1", "1");
expect_add("1", "1", "2");
expect_add("1.5", "1.5", "3");
expect_add("0.1", "0.1", "0.2");
expect_add("123", "456", "579");
}
TEST_END
static void
expect_sub(const char *astr, const char *bstr, const char* resultstr) {
fxp_t a = xparse_fxp(astr);
fxp_t b = xparse_fxp(bstr);
fxp_t result = xparse_fxp(resultstr);
expect_true(fxp_close(fxp_sub(a, b), result),
"Expected %s - %s == %s", astr, bstr, resultstr);
}
TEST_BEGIN(test_sub_simple) {
expect_sub("0", "0", "0");
expect_sub("1", "0", "1");
expect_sub("1", "1", "0");
expect_sub("3.5", "1.5", "2");
expect_sub("0.3", "0.1", "0.2");
expect_sub("456", "123", "333");
}
TEST_END
static void
expect_mul(const char *astr, const char *bstr, const char* resultstr) {
fxp_t a = xparse_fxp(astr);
fxp_t b = xparse_fxp(bstr);
fxp_t result = xparse_fxp(resultstr);
expect_true(fxp_close(fxp_mul(a, b), result),
"Expected %s * %s == %s", astr, bstr, resultstr);
}
TEST_BEGIN(test_mul_simple) {
expect_mul("0", "0", "0");
expect_mul("1", "0", "0");
expect_mul("1", "1", "1");
expect_mul("1.5", "1.5", "2.25");
expect_mul("100.0", "10", "1000");
expect_mul(".1", "10", "1");
}
TEST_END
static void
expect_div(const char *astr, const char *bstr, const char* resultstr) {
fxp_t a = xparse_fxp(astr);
fxp_t b = xparse_fxp(bstr);
fxp_t result = xparse_fxp(resultstr);
expect_true(fxp_close(fxp_div(a, b), result),
"Expected %s / %s == %s", astr, bstr, resultstr);
}
TEST_BEGIN(test_div_simple) {
expect_div("1", "1", "1");
expect_div("0", "1", "0");
expect_div("2", "1", "2");
expect_div("3", "2", "1.5");
expect_div("3", "1.5", "2");
expect_div("10", ".1", "100");
expect_div("123", "456", ".2697368421");
}
TEST_END
static void
expect_round(const char *str, uint32_t rounded_down, uint32_t rounded_nearest) {
fxp_t fxp = xparse_fxp(str);
uint32_t fxp_rounded_down = fxp_round_down(fxp);
uint32_t fxp_rounded_nearest = fxp_round_nearest(fxp);
expect_u32_eq(rounded_down, fxp_rounded_down,
"Mistake rounding %s down", str);
expect_u32_eq(rounded_nearest, fxp_rounded_nearest,
"Mistake rounding %s to nearest", str);
}
TEST_BEGIN(test_round_simple) {
expect_round("1.5", 1, 2);
expect_round("0", 0, 0);
expect_round("0.1", 0, 0);
expect_round("0.4", 0, 0);
expect_round("0.40000", 0, 0);
expect_round("0.5", 0, 1);
expect_round("0.6", 0, 1);
expect_round("123", 123, 123);
expect_round("123.4", 123, 123);
expect_round("123.5", 123, 124);
}
TEST_END
static void
expect_mul_frac(size_t a, const char *fracstr, size_t expected) {
fxp_t frac = xparse_fxp(fracstr);
size_t result = fxp_mul_frac(a, frac);
expect_true(double_close(expected, result),
"Expected %zu * %s == %zu (fracmul); got %zu", a, fracstr,
expected, result);
}
TEST_BEGIN(test_mul_frac_simple) {
expect_mul_frac(SIZE_MAX, "1.0", SIZE_MAX);
expect_mul_frac(SIZE_MAX, ".75", SIZE_MAX / 4 * 3);
expect_mul_frac(SIZE_MAX, ".5", SIZE_MAX / 2);
expect_mul_frac(SIZE_MAX, ".25", SIZE_MAX / 4);
expect_mul_frac(1U << 16, "1.0", 1U << 16);
expect_mul_frac(1U << 30, "0.5", 1U << 29);
expect_mul_frac(1U << 30, "0.25", 1U << 28);
expect_mul_frac(1U << 30, "0.125", 1U << 27);
expect_mul_frac((1U << 30) + 1, "0.125", 1U << 27);
expect_mul_frac(100, "0.25", 25);
expect_mul_frac(1000 * 1000, "0.001", 1000);
}
TEST_END
static void
expect_print(const char *str) {
fxp_t fxp = xparse_fxp(str);
char buf[FXP_BUF_SIZE];
fxp_print(fxp, buf);
expect_d_eq(0, strcmp(str, buf), "Couldn't round-trip print %s", str);
}
TEST_BEGIN(test_print_simple) {
expect_print("0.0");
expect_print("1.0");
expect_print("2.0");
expect_print("123.0");
/*
* We hit the possibility of roundoff errors whenever the fractional
* component isn't a round binary number; only check these here (we
* round-trip properly in the stress test).
*/
expect_print("1.5");
expect_print("3.375");
expect_print("0.25");
expect_print("0.125");
/* 1 / 2**14 */
expect_print("0.00006103515625");
}
TEST_END
TEST_BEGIN(test_stress) {
const char *numbers[] = {
"0.0", "0.1", "0.2", "0.3", "0.4",
"0.5", "0.6", "0.7", "0.8", "0.9",
"1.0", "1.1", "1.2", "1.3", "1.4",
"1.5", "1.6", "1.7", "1.8", "1.9",
"2.0", "2.1", "2.2", "2.3", "2.4",
"2.5", "2.6", "2.7", "2.8", "2.9",
"17.0", "17.1", "17.2", "17.3", "17.4",
"17.5", "17.6", "17.7", "17.8", "17.9",
"18.0", "18.1", "18.2", "18.3", "18.4",
"18.5", "18.6", "18.7", "18.8", "18.9",
"123.0", "123.1", "123.2", "123.3", "123.4",
"123.5", "123.6", "123.7", "123.8", "123.9",
"124.0", "124.1", "124.2", "124.3", "124.4",
"124.5", "124.6", "124.7", "124.8", "124.9",
"125.0", "125.1", "125.2", "125.3", "125.4",
"125.5", "125.6", "125.7", "125.8", "125.9"};
size_t numbers_len = sizeof(numbers)/sizeof(numbers[0]);
for (size_t i = 0; i < numbers_len; i++) {
fxp_t fxp_a = xparse_fxp(numbers[i]);
double double_a = strtod(numbers[i], NULL);
uint32_t fxp_rounded_down = fxp_round_down(fxp_a);
uint32_t fxp_rounded_nearest = fxp_round_nearest(fxp_a);
uint32_t double_rounded_down = (uint32_t)double_a;
uint32_t double_rounded_nearest = (uint32_t)round(double_a);
expect_u32_eq(double_rounded_down, fxp_rounded_down,
"Incorrectly rounded down %s", numbers[i]);
expect_u32_eq(double_rounded_nearest, fxp_rounded_nearest,
"Incorrectly rounded-to-nearest %s", numbers[i]);
for (size_t j = 0; j < numbers_len; j++) {
fxp_t fxp_b = xparse_fxp(numbers[j]);
double double_b = strtod(numbers[j], NULL);
fxp_t fxp_sum = fxp_add(fxp_a, fxp_b);
double double_sum = double_a + double_b;
expect_true(
double_close(fxp2double(fxp_sum), double_sum),
"Miscomputed %s + %s", numbers[i], numbers[j]);
if (double_a > double_b) {
fxp_t fxp_diff = fxp_sub(fxp_a, fxp_b);
double double_diff = double_a - double_b;
expect_true(
double_close(fxp2double(fxp_diff),
double_diff),
"Miscomputed %s - %s", numbers[i],
numbers[j]);
}
fxp_t fxp_prod = fxp_mul(fxp_a, fxp_b);
double double_prod = double_a * double_b;
expect_true(
double_close(fxp2double(fxp_prod), double_prod),
"Miscomputed %s * %s", numbers[i], numbers[j]);
if (double_b != 0.0) {
fxp_t fxp_quot = fxp_div(fxp_a, fxp_b);
double double_quot = double_a / double_b;
expect_true(
double_close(fxp2double(fxp_quot),
double_quot),
"Miscomputed %s / %s", numbers[i],
numbers[j]);
}
}
}
}
TEST_END
int
main(void) {
return test_no_reentrancy(
test_parse_valid,
test_parse_invalid,
test_init_percent,
test_add_simple,
test_sub_simple,
test_mul_simple,
test_div_simple,
test_round_simple,
test_mul_frac_simple,
test_print_simple,
test_stress);
}