server-skynet-source-3rd-je.../include/jemalloc/internal/qr.h
2020-04-11 10:32:11 -07:00

141 lines
4.1 KiB
C

#ifndef JEMALLOC_INTERNAL_QR_H
#define JEMALLOC_INTERNAL_QR_H
/*
* A ring implementation based on an embedded circular doubly-linked list.
*
* You define your struct like so:
*
* typedef struct my_s my_t;
* struct my_s {
* int data;
* qr(my_t) my_link;
* };
*
* And then pass a my_t * into macros for a_qr arguments, and the token
* "my_link" into a_field fields.
*/
/* Ring definitions. */
#define qr(a_type) \
struct { \
a_type *qre_next; \
a_type *qre_prev; \
}
/*
* Initialize a qr link. Every link must be initialized before being used, even
* if that initialization is going to be immediately overwritten (say, by being
* passed into an insertion macro).
*/
#define qr_new(a_qr, a_field) do { \
(a_qr)->a_field.qre_next = (a_qr); \
(a_qr)->a_field.qre_prev = (a_qr); \
} while (0)
/*
* Go forwards or backwards in the ring. Note that (the ring being circular), this
* always succeeds -- you just keep looping around and around the ring if you
* chase pointers without end.
*/
#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next)
#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev)
/*
* Given two rings:
* a -> a_1 -> ... -> a_n --
* ^ |
* |------------------------
*
* b -> b_1 -> ... -> b_n --
* ^ |
* |------------------------
*
* Results in the ring:
* a -> a_1 -> ... -> a_n -> b -> b_1 -> ... -> b_n --
* ^ |
* |-------------------------------------------------|
*
* a_qr_a can directly be a qr_next() macro, but a_qr_b cannot.
*/
#define qr_meld(a_qr_a, a_qr_b, a_field) do { \
(a_qr_b)->a_field.qre_prev->a_field.qre_next = \
(a_qr_a)->a_field.qre_prev; \
(a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \
(a_qr_b)->a_field.qre_prev = \
(a_qr_b)->a_field.qre_prev->a_field.qre_next; \
(a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \
(a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \
} while (0)
/*
* Logically, this is just a meld. The intent, though, is that a_qrelm is a
* single-element ring, so that "before" has a more obvious interpretation than
* meld.
*/
#define qr_before_insert(a_qrelm, a_qr, a_field) \
qr_meld((a_qrelm), (a_qr), a_field)
/* Ditto, but inserting after rather than before. */
#define qr_after_insert(a_qrelm, a_qr, a_field) \
qr_before_insert(qr_next(a_qrelm, a_field), (a_qr), a_field)
/*
* Inverts meld; given the ring:
* a -> a_1 -> ... -> a_n -> b -> b_1 -> ... -> b_n --
* ^ |
* |-------------------------------------------------|
*
* Results in two rings:
* a -> a_1 -> ... -> a_n --
* ^ |
* |------------------------
*
* b -> b_1 -> ... -> b_n --
* ^ |
* |------------------------
*
* qr_meld() and qr_split() are functionally equivalent, so there's no need to
* have two copies of the code.
*/
#define qr_split(a_qr_a, a_qr_b, a_field) \
qr_meld((a_qr_a), (a_qr_b), a_field)
/*
* Splits off a_qr from the rest of its ring, so that it becomes a
* single-element ring.
*/
#define qr_remove(a_qr, a_field) \
qr_split(qr_next(a_qr, a_field), (a_qr), a_field)
/*
* Helper macro to iterate over each element in a ring exactly once, starting
* with a_qr. The usage is (assuming my_t defined as above):
*
* int sum(my_t *item) {
* int sum = 0;
* my_t *iter;
* qr_foreach(iter, item, link) {
* sum += iter->data;
* }
* return sum;
* }
*/
#define qr_foreach(var, a_qr, a_field) \
for ((var) = (a_qr); \
(var) != NULL; \
(var) = (((var)->a_field.qre_next != (a_qr)) \
? (var)->a_field.qre_next : NULL))
/*
* The same (and with the same usage) as qr_foreach, but in the opposite order,
* ending with a_qr.
*/
#define qr_reverse_foreach(var, a_qr, a_field) \
for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \
(var) != NULL; \
(var) = (((var) != (a_qr)) \
? (var)->a_field.qre_prev : NULL))
#endif /* JEMALLOC_INTERNAL_QR_H */