server-skynet-source-3rd-je.../src/prof_data.c
2019-12-10 16:31:05 -08:00

1480 lines
37 KiB
C

#define JEMALLOC_PROF_C_
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/hash.h"
#include "jemalloc/internal/malloc_io.h"
/*
* This file defines and manages the core profiling data structures.
*
* Conceptually, profiling data can be imagined as a table with three columns:
* thread, stack trace, and current allocation size. (When prof_accum is on,
* there's one additional column which is the cumulative allocation size.)
*
* Implementation wise, each thread maintains a hash recording the stack trace
* to allocation size correspondences, which are basically the individual rows
* in the table. In addition, two global "indices" are built to make data
* aggregation efficient (for dumping): bt2gctx and tdatas, which are basically
* the "grouped by stack trace" and "grouped by thread" views of the same table,
* respectively. Note that the allocation size is only aggregated to the two
* indices at dumping time, so as to optimize for performance.
*/
/******************************************************************************/
/*
* Global hash of (prof_bt_t *)-->(prof_gctx_t *). This is the master data
* structure that knows about all backtraces currently captured.
*/
static ckh_t bt2gctx;
/*
* Tree of all extant prof_tdata_t structures, regardless of state,
* {attached,detached,expired}.
*/
static prof_tdata_tree_t tdatas;
/*
* This buffer is rather large for stack allocation, so use a single buffer for
* all profile dumps.
*/
static char prof_dump_buf[
/* Minimize memory bloat for non-prof builds. */
#ifdef JEMALLOC_PROF
PROF_DUMP_BUFSIZE
#else
1
#endif
];
static size_t prof_dump_buf_end;
static int prof_dump_fd;
/******************************************************************************/
/* Red-black trees. */
static int
prof_tctx_comp(const prof_tctx_t *a, const prof_tctx_t *b) {
uint64_t a_thr_uid = a->thr_uid;
uint64_t b_thr_uid = b->thr_uid;
int ret = (a_thr_uid > b_thr_uid) - (a_thr_uid < b_thr_uid);
if (ret == 0) {
uint64_t a_thr_discrim = a->thr_discrim;
uint64_t b_thr_discrim = b->thr_discrim;
ret = (a_thr_discrim > b_thr_discrim) - (a_thr_discrim <
b_thr_discrim);
if (ret == 0) {
uint64_t a_tctx_uid = a->tctx_uid;
uint64_t b_tctx_uid = b->tctx_uid;
ret = (a_tctx_uid > b_tctx_uid) - (a_tctx_uid <
b_tctx_uid);
}
}
return ret;
}
rb_gen(static UNUSED, tctx_tree_, prof_tctx_tree_t, prof_tctx_t,
tctx_link, prof_tctx_comp)
static int
prof_gctx_comp(const prof_gctx_t *a, const prof_gctx_t *b) {
unsigned a_len = a->bt.len;
unsigned b_len = b->bt.len;
unsigned comp_len = (a_len < b_len) ? a_len : b_len;
int ret = memcmp(a->bt.vec, b->bt.vec, comp_len * sizeof(void *));
if (ret == 0) {
ret = (a_len > b_len) - (a_len < b_len);
}
return ret;
}
rb_gen(static UNUSED, gctx_tree_, prof_gctx_tree_t, prof_gctx_t, dump_link,
prof_gctx_comp)
static int
prof_tdata_comp(const prof_tdata_t *a, const prof_tdata_t *b) {
int ret;
uint64_t a_uid = a->thr_uid;
uint64_t b_uid = b->thr_uid;
ret = ((a_uid > b_uid) - (a_uid < b_uid));
if (ret == 0) {
uint64_t a_discrim = a->thr_discrim;
uint64_t b_discrim = b->thr_discrim;
ret = ((a_discrim > b_discrim) - (a_discrim < b_discrim));
}
return ret;
}
rb_gen(static UNUSED, tdata_tree_, prof_tdata_tree_t, prof_tdata_t, tdata_link,
prof_tdata_comp)
/******************************************************************************/
bool
prof_data_init(tsd_t *tsd) {
tdata_tree_new(&tdatas);
return ckh_new(tsd, &bt2gctx, PROF_CKH_MINITEMS,
prof_bt_hash, prof_bt_keycomp);
}
static void
prof_enter(tsd_t *tsd, prof_tdata_t *tdata) {
cassert(config_prof);
assert(tdata == prof_tdata_get(tsd, false));
if (tdata != NULL) {
assert(!tdata->enq);
tdata->enq = true;
}
malloc_mutex_lock(tsd_tsdn(tsd), &bt2gctx_mtx);
}
static void
prof_leave(tsd_t *tsd, prof_tdata_t *tdata) {
cassert(config_prof);
assert(tdata == prof_tdata_get(tsd, false));
malloc_mutex_unlock(tsd_tsdn(tsd), &bt2gctx_mtx);
if (tdata != NULL) {
bool idump, gdump;
assert(tdata->enq);
tdata->enq = false;
idump = tdata->enq_idump;
tdata->enq_idump = false;
gdump = tdata->enq_gdump;
tdata->enq_gdump = false;
if (idump) {
prof_idump(tsd_tsdn(tsd));
}
if (gdump) {
prof_gdump(tsd_tsdn(tsd));
}
}
}
static prof_gctx_t *
prof_gctx_create(tsdn_t *tsdn, prof_bt_t *bt) {
/*
* Create a single allocation that has space for vec of length bt->len.
*/
size_t size = offsetof(prof_gctx_t, vec) + (bt->len * sizeof(void *));
prof_gctx_t *gctx = (prof_gctx_t *)iallocztm(tsdn, size,
sz_size2index(size), false, NULL, true, arena_get(TSDN_NULL, 0, true),
true);
if (gctx == NULL) {
return NULL;
}
gctx->lock = prof_gctx_mutex_choose();
/*
* Set nlimbo to 1, in order to avoid a race condition with
* prof_tctx_destroy()/prof_gctx_try_destroy().
*/
gctx->nlimbo = 1;
tctx_tree_new(&gctx->tctxs);
/* Duplicate bt. */
memcpy(gctx->vec, bt->vec, bt->len * sizeof(void *));
gctx->bt.vec = gctx->vec;
gctx->bt.len = bt->len;
return gctx;
}
static void
prof_gctx_try_destroy(tsd_t *tsd, prof_tdata_t *tdata_self, prof_gctx_t *gctx,
prof_tdata_t *tdata) {
cassert(config_prof);
/*
* Check that gctx is still unused by any thread cache before destroying
* it. prof_lookup() increments gctx->nlimbo in order to avoid a race
* condition with this function, as does prof_tctx_destroy() in order to
* avoid a race between the main body of prof_tctx_destroy() and entry
* into this function.
*/
prof_enter(tsd, tdata_self);
malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
assert(gctx->nlimbo != 0);
if (tctx_tree_empty(&gctx->tctxs) && gctx->nlimbo == 1) {
/* Remove gctx from bt2gctx. */
if (ckh_remove(tsd, &bt2gctx, &gctx->bt, NULL, NULL)) {
not_reached();
}
prof_leave(tsd, tdata_self);
/* Destroy gctx. */
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
idalloctm(tsd_tsdn(tsd), gctx, NULL, NULL, true, true);
} else {
/*
* Compensate for increment in prof_tctx_destroy() or
* prof_lookup().
*/
gctx->nlimbo--;
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
prof_leave(tsd, tdata_self);
}
}
static bool
prof_gctx_should_destroy(prof_gctx_t *gctx) {
if (opt_prof_accum) {
return false;
}
if (!tctx_tree_empty(&gctx->tctxs)) {
return false;
}
if (gctx->nlimbo != 0) {
return false;
}
return true;
}
static bool
prof_lookup_global(tsd_t *tsd, prof_bt_t *bt, prof_tdata_t *tdata,
void **p_btkey, prof_gctx_t **p_gctx, bool *p_new_gctx) {
union {
prof_gctx_t *p;
void *v;
} gctx, tgctx;
union {
prof_bt_t *p;
void *v;
} btkey;
bool new_gctx;
prof_enter(tsd, tdata);
if (ckh_search(&bt2gctx, bt, &btkey.v, &gctx.v)) {
/* bt has never been seen before. Insert it. */
prof_leave(tsd, tdata);
tgctx.p = prof_gctx_create(tsd_tsdn(tsd), bt);
if (tgctx.v == NULL) {
return true;
}
prof_enter(tsd, tdata);
if (ckh_search(&bt2gctx, bt, &btkey.v, &gctx.v)) {
gctx.p = tgctx.p;
btkey.p = &gctx.p->bt;
if (ckh_insert(tsd, &bt2gctx, btkey.v, gctx.v)) {
/* OOM. */
prof_leave(tsd, tdata);
idalloctm(tsd_tsdn(tsd), gctx.v, NULL, NULL,
true, true);
return true;
}
new_gctx = true;
} else {
new_gctx = false;
}
} else {
tgctx.v = NULL;
new_gctx = false;
}
if (!new_gctx) {
/*
* Increment nlimbo, in order to avoid a race condition with
* prof_tctx_destroy()/prof_gctx_try_destroy().
*/
malloc_mutex_lock(tsd_tsdn(tsd), gctx.p->lock);
gctx.p->nlimbo++;
malloc_mutex_unlock(tsd_tsdn(tsd), gctx.p->lock);
new_gctx = false;
if (tgctx.v != NULL) {
/* Lost race to insert. */
idalloctm(tsd_tsdn(tsd), tgctx.v, NULL, NULL, true,
true);
}
}
prof_leave(tsd, tdata);
*p_btkey = btkey.v;
*p_gctx = gctx.p;
*p_new_gctx = new_gctx;
return false;
}
static prof_tctx_t *
prof_lookup(tsd_t *tsd, prof_bt_t *bt) {
union {
prof_tctx_t *p;
void *v;
} ret;
prof_tdata_t *tdata;
bool not_found;
cassert(config_prof);
tdata = prof_tdata_get(tsd, false);
assert(tdata != NULL);
malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock);
not_found = ckh_search(&tdata->bt2tctx, bt, NULL, &ret.v);
if (!not_found) { /* Note double negative! */
ret.p->prepared = true;
}
malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
if (not_found) {
void *btkey;
prof_gctx_t *gctx;
bool new_gctx, error;
/*
* This thread's cache lacks bt. Look for it in the global
* cache.
*/
if (prof_lookup_global(tsd, bt, tdata, &btkey, &gctx,
&new_gctx)) {
return NULL;
}
/* Link a prof_tctx_t into gctx for this thread. */
ret.v = iallocztm(tsd_tsdn(tsd), sizeof(prof_tctx_t),
sz_size2index(sizeof(prof_tctx_t)), false, NULL, true,
arena_ichoose(tsd, NULL), true);
if (ret.p == NULL) {
if (new_gctx) {
prof_gctx_try_destroy(tsd, tdata, gctx, tdata);
}
return NULL;
}
ret.p->tdata = tdata;
ret.p->thr_uid = tdata->thr_uid;
ret.p->thr_discrim = tdata->thr_discrim;
memset(&ret.p->cnts, 0, sizeof(prof_cnt_t));
ret.p->gctx = gctx;
ret.p->tctx_uid = tdata->tctx_uid_next++;
ret.p->prepared = true;
ret.p->state = prof_tctx_state_initializing;
malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock);
error = ckh_insert(tsd, &tdata->bt2tctx, btkey, ret.v);
malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
if (error) {
if (new_gctx) {
prof_gctx_try_destroy(tsd, tdata, gctx, tdata);
}
idalloctm(tsd_tsdn(tsd), ret.v, NULL, NULL, true, true);
return NULL;
}
malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
ret.p->state = prof_tctx_state_nominal;
tctx_tree_insert(&gctx->tctxs, ret.p);
gctx->nlimbo--;
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
}
return ret.p;
}
prof_tctx_t *
prof_tctx_create(tsd_t *tsd) {
prof_tdata_t *tdata = prof_tdata_get(tsd, false);
assert(tdata != NULL);
prof_bt_t bt;
bt_init(&bt, tdata->vec);
prof_backtrace(tsd, &bt);
return prof_lookup(tsd, &bt);
}
#ifdef JEMALLOC_JET
static prof_tdata_t *
prof_tdata_count_iter(prof_tdata_tree_t *tdatas, prof_tdata_t *tdata,
void *arg) {
size_t *tdata_count = (size_t *)arg;
(*tdata_count)++;
return NULL;
}
size_t
prof_tdata_count(void) {
size_t tdata_count = 0;
tsdn_t *tsdn;
tsdn = tsdn_fetch();
malloc_mutex_lock(tsdn, &tdatas_mtx);
tdata_tree_iter(&tdatas, NULL, prof_tdata_count_iter,
(void *)&tdata_count);
malloc_mutex_unlock(tsdn, &tdatas_mtx);
return tdata_count;
}
size_t
prof_bt_count(void) {
size_t bt_count;
tsd_t *tsd;
prof_tdata_t *tdata;
tsd = tsd_fetch();
tdata = prof_tdata_get(tsd, false);
if (tdata == NULL) {
return 0;
}
malloc_mutex_lock(tsd_tsdn(tsd), &bt2gctx_mtx);
bt_count = ckh_count(&bt2gctx);
malloc_mutex_unlock(tsd_tsdn(tsd), &bt2gctx_mtx);
return bt_count;
}
#endif
static int
prof_dump_open_impl(bool propagate_err, const char *filename) {
int fd;
fd = creat(filename, 0644);
if (fd == -1 && !propagate_err) {
malloc_printf("<jemalloc>: creat(\"%s\"), 0644) failed\n",
filename);
if (opt_abort) {
abort();
}
}
return fd;
}
prof_dump_open_t *JET_MUTABLE prof_dump_open = prof_dump_open_impl;
static bool
prof_dump_flush(bool propagate_err) {
bool ret = false;
ssize_t err;
cassert(config_prof);
err = malloc_write_fd(prof_dump_fd, prof_dump_buf, prof_dump_buf_end);
if (err == -1) {
if (!propagate_err) {
malloc_write("<jemalloc>: write() failed during heap "
"profile flush\n");
if (opt_abort) {
abort();
}
}
ret = true;
}
prof_dump_buf_end = 0;
return ret;
}
static bool
prof_dump_close(bool propagate_err) {
bool ret;
assert(prof_dump_fd != -1);
ret = prof_dump_flush(propagate_err);
close(prof_dump_fd);
prof_dump_fd = -1;
return ret;
}
static bool
prof_dump_write(bool propagate_err, const char *s) {
size_t i, slen, n;
cassert(config_prof);
i = 0;
slen = strlen(s);
while (i < slen) {
/* Flush the buffer if it is full. */
if (prof_dump_buf_end == PROF_DUMP_BUFSIZE) {
if (prof_dump_flush(propagate_err) && propagate_err) {
return true;
}
}
if (prof_dump_buf_end + slen - i <= PROF_DUMP_BUFSIZE) {
/* Finish writing. */
n = slen - i;
} else {
/* Write as much of s as will fit. */
n = PROF_DUMP_BUFSIZE - prof_dump_buf_end;
}
memcpy(&prof_dump_buf[prof_dump_buf_end], &s[i], n);
prof_dump_buf_end += n;
i += n;
}
assert(i == slen);
return false;
}
JEMALLOC_FORMAT_PRINTF(2, 3)
static bool
prof_dump_printf(bool propagate_err, const char *format, ...) {
bool ret;
va_list ap;
char buf[PROF_PRINTF_BUFSIZE];
va_start(ap, format);
malloc_vsnprintf(buf, sizeof(buf), format, ap);
va_end(ap);
ret = prof_dump_write(propagate_err, buf);
return ret;
}
static void
prof_tctx_merge_tdata(tsdn_t *tsdn, prof_tctx_t *tctx, prof_tdata_t *tdata) {
malloc_mutex_assert_owner(tsdn, tctx->tdata->lock);
malloc_mutex_lock(tsdn, tctx->gctx->lock);
switch (tctx->state) {
case prof_tctx_state_initializing:
malloc_mutex_unlock(tsdn, tctx->gctx->lock);
return;
case prof_tctx_state_nominal:
tctx->state = prof_tctx_state_dumping;
malloc_mutex_unlock(tsdn, tctx->gctx->lock);
memcpy(&tctx->dump_cnts, &tctx->cnts, sizeof(prof_cnt_t));
tdata->cnt_summed.curobjs += tctx->dump_cnts.curobjs;
tdata->cnt_summed.curbytes += tctx->dump_cnts.curbytes;
if (opt_prof_accum) {
tdata->cnt_summed.accumobjs +=
tctx->dump_cnts.accumobjs;
tdata->cnt_summed.accumbytes +=
tctx->dump_cnts.accumbytes;
}
break;
case prof_tctx_state_dumping:
case prof_tctx_state_purgatory:
not_reached();
}
}
static void
prof_tctx_merge_gctx(tsdn_t *tsdn, prof_tctx_t *tctx, prof_gctx_t *gctx) {
malloc_mutex_assert_owner(tsdn, gctx->lock);
gctx->cnt_summed.curobjs += tctx->dump_cnts.curobjs;
gctx->cnt_summed.curbytes += tctx->dump_cnts.curbytes;
if (opt_prof_accum) {
gctx->cnt_summed.accumobjs += tctx->dump_cnts.accumobjs;
gctx->cnt_summed.accumbytes += tctx->dump_cnts.accumbytes;
}
}
static prof_tctx_t *
prof_tctx_merge_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) {
tsdn_t *tsdn = (tsdn_t *)arg;
malloc_mutex_assert_owner(tsdn, tctx->gctx->lock);
switch (tctx->state) {
case prof_tctx_state_nominal:
/* New since dumping started; ignore. */
break;
case prof_tctx_state_dumping:
case prof_tctx_state_purgatory:
prof_tctx_merge_gctx(tsdn, tctx, tctx->gctx);
break;
default:
not_reached();
}
return NULL;
}
struct prof_tctx_dump_iter_arg_s {
tsdn_t *tsdn;
bool propagate_err;
};
static prof_tctx_t *
prof_tctx_dump_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *opaque) {
struct prof_tctx_dump_iter_arg_s *arg =
(struct prof_tctx_dump_iter_arg_s *)opaque;
malloc_mutex_assert_owner(arg->tsdn, tctx->gctx->lock);
switch (tctx->state) {
case prof_tctx_state_initializing:
case prof_tctx_state_nominal:
/* Not captured by this dump. */
break;
case prof_tctx_state_dumping:
case prof_tctx_state_purgatory:
if (prof_dump_printf(arg->propagate_err,
" t%"FMTu64": %"FMTu64": %"FMTu64" [%"FMTu64": "
"%"FMTu64"]\n", tctx->thr_uid, tctx->dump_cnts.curobjs,
tctx->dump_cnts.curbytes, tctx->dump_cnts.accumobjs,
tctx->dump_cnts.accumbytes)) {
return tctx;
}
break;
default:
not_reached();
}
return NULL;
}
static prof_tctx_t *
prof_tctx_finish_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) {
tsdn_t *tsdn = (tsdn_t *)arg;
prof_tctx_t *ret;
malloc_mutex_assert_owner(tsdn, tctx->gctx->lock);
switch (tctx->state) {
case prof_tctx_state_nominal:
/* New since dumping started; ignore. */
break;
case prof_tctx_state_dumping:
tctx->state = prof_tctx_state_nominal;
break;
case prof_tctx_state_purgatory:
ret = tctx;
goto label_return;
default:
not_reached();
}
ret = NULL;
label_return:
return ret;
}
static void
prof_dump_gctx_prep(tsdn_t *tsdn, prof_gctx_t *gctx, prof_gctx_tree_t *gctxs) {
cassert(config_prof);
malloc_mutex_lock(tsdn, gctx->lock);
/*
* Increment nlimbo so that gctx won't go away before dump.
* Additionally, link gctx into the dump list so that it is included in
* prof_dump()'s second pass.
*/
gctx->nlimbo++;
gctx_tree_insert(gctxs, gctx);
memset(&gctx->cnt_summed, 0, sizeof(prof_cnt_t));
malloc_mutex_unlock(tsdn, gctx->lock);
}
struct prof_gctx_merge_iter_arg_s {
tsdn_t *tsdn;
size_t leak_ngctx;
};
static prof_gctx_t *
prof_gctx_merge_iter(prof_gctx_tree_t *gctxs, prof_gctx_t *gctx, void *opaque) {
struct prof_gctx_merge_iter_arg_s *arg =
(struct prof_gctx_merge_iter_arg_s *)opaque;
malloc_mutex_lock(arg->tsdn, gctx->lock);
tctx_tree_iter(&gctx->tctxs, NULL, prof_tctx_merge_iter,
(void *)arg->tsdn);
if (gctx->cnt_summed.curobjs != 0) {
arg->leak_ngctx++;
}
malloc_mutex_unlock(arg->tsdn, gctx->lock);
return NULL;
}
static void
prof_gctx_finish(tsd_t *tsd, prof_gctx_tree_t *gctxs) {
prof_tdata_t *tdata = prof_tdata_get(tsd, false);
prof_gctx_t *gctx;
/*
* Standard tree iteration won't work here, because as soon as we
* decrement gctx->nlimbo and unlock gctx, another thread can
* concurrently destroy it, which will corrupt the tree. Therefore,
* tear down the tree one node at a time during iteration.
*/
while ((gctx = gctx_tree_first(gctxs)) != NULL) {
gctx_tree_remove(gctxs, gctx);
malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
{
prof_tctx_t *next;
next = NULL;
do {
prof_tctx_t *to_destroy =
tctx_tree_iter(&gctx->tctxs, next,
prof_tctx_finish_iter,
(void *)tsd_tsdn(tsd));
if (to_destroy != NULL) {
next = tctx_tree_next(&gctx->tctxs,
to_destroy);
tctx_tree_remove(&gctx->tctxs,
to_destroy);
idalloctm(tsd_tsdn(tsd), to_destroy,
NULL, NULL, true, true);
} else {
next = NULL;
}
} while (next != NULL);
}
gctx->nlimbo--;
if (prof_gctx_should_destroy(gctx)) {
gctx->nlimbo++;
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
prof_gctx_try_destroy(tsd, tdata, gctx, tdata);
} else {
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
}
}
}
struct prof_tdata_merge_iter_arg_s {
tsdn_t *tsdn;
prof_cnt_t cnt_all;
};
static prof_tdata_t *
prof_tdata_merge_iter(prof_tdata_tree_t *tdatas, prof_tdata_t *tdata,
void *opaque) {
struct prof_tdata_merge_iter_arg_s *arg =
(struct prof_tdata_merge_iter_arg_s *)opaque;
malloc_mutex_lock(arg->tsdn, tdata->lock);
if (!tdata->expired) {
size_t tabind;
union {
prof_tctx_t *p;
void *v;
} tctx;
tdata->dumping = true;
memset(&tdata->cnt_summed, 0, sizeof(prof_cnt_t));
for (tabind = 0; !ckh_iter(&tdata->bt2tctx, &tabind, NULL,
&tctx.v);) {
prof_tctx_merge_tdata(arg->tsdn, tctx.p, tdata);
}
arg->cnt_all.curobjs += tdata->cnt_summed.curobjs;
arg->cnt_all.curbytes += tdata->cnt_summed.curbytes;
if (opt_prof_accum) {
arg->cnt_all.accumobjs += tdata->cnt_summed.accumobjs;
arg->cnt_all.accumbytes += tdata->cnt_summed.accumbytes;
}
} else {
tdata->dumping = false;
}
malloc_mutex_unlock(arg->tsdn, tdata->lock);
return NULL;
}
static prof_tdata_t *
prof_tdata_dump_iter(prof_tdata_tree_t *tdatas, prof_tdata_t *tdata,
void *arg) {
bool propagate_err = *(bool *)arg;
if (!tdata->dumping) {
return NULL;
}
if (prof_dump_printf(propagate_err,
" t%"FMTu64": %"FMTu64": %"FMTu64" [%"FMTu64": %"FMTu64"]%s%s\n",
tdata->thr_uid, tdata->cnt_summed.curobjs,
tdata->cnt_summed.curbytes, tdata->cnt_summed.accumobjs,
tdata->cnt_summed.accumbytes,
(tdata->thread_name != NULL) ? " " : "",
(tdata->thread_name != NULL) ? tdata->thread_name : "")) {
return tdata;
}
return NULL;
}
static bool
prof_dump_header_impl(tsdn_t *tsdn, bool propagate_err,
const prof_cnt_t *cnt_all) {
bool ret;
if (prof_dump_printf(propagate_err,
"heap_v2/%"FMTu64"\n"
" t*: %"FMTu64": %"FMTu64" [%"FMTu64": %"FMTu64"]\n",
((uint64_t)1U << lg_prof_sample), cnt_all->curobjs,
cnt_all->curbytes, cnt_all->accumobjs, cnt_all->accumbytes)) {
return true;
}
malloc_mutex_lock(tsdn, &tdatas_mtx);
ret = (tdata_tree_iter(&tdatas, NULL, prof_tdata_dump_iter,
(void *)&propagate_err) != NULL);
malloc_mutex_unlock(tsdn, &tdatas_mtx);
return ret;
}
prof_dump_header_t *JET_MUTABLE prof_dump_header = prof_dump_header_impl;
static bool
prof_dump_gctx(tsdn_t *tsdn, bool propagate_err, prof_gctx_t *gctx,
const prof_bt_t *bt, prof_gctx_tree_t *gctxs) {
bool ret;
unsigned i;
struct prof_tctx_dump_iter_arg_s prof_tctx_dump_iter_arg;
cassert(config_prof);
malloc_mutex_assert_owner(tsdn, gctx->lock);
/* Avoid dumping such gctx's that have no useful data. */
if ((!opt_prof_accum && gctx->cnt_summed.curobjs == 0) ||
(opt_prof_accum && gctx->cnt_summed.accumobjs == 0)) {
assert(gctx->cnt_summed.curobjs == 0);
assert(gctx->cnt_summed.curbytes == 0);
assert(gctx->cnt_summed.accumobjs == 0);
assert(gctx->cnt_summed.accumbytes == 0);
ret = false;
goto label_return;
}
if (prof_dump_printf(propagate_err, "@")) {
ret = true;
goto label_return;
}
for (i = 0; i < bt->len; i++) {
if (prof_dump_printf(propagate_err, " %#"FMTxPTR,
(uintptr_t)bt->vec[i])) {
ret = true;
goto label_return;
}
}
if (prof_dump_printf(propagate_err,
"\n"
" t*: %"FMTu64": %"FMTu64" [%"FMTu64": %"FMTu64"]\n",
gctx->cnt_summed.curobjs, gctx->cnt_summed.curbytes,
gctx->cnt_summed.accumobjs, gctx->cnt_summed.accumbytes)) {
ret = true;
goto label_return;
}
prof_tctx_dump_iter_arg.tsdn = tsdn;
prof_tctx_dump_iter_arg.propagate_err = propagate_err;
if (tctx_tree_iter(&gctx->tctxs, NULL, prof_tctx_dump_iter,
(void *)&prof_tctx_dump_iter_arg) != NULL) {
ret = true;
goto label_return;
}
ret = false;
label_return:
return ret;
}
#ifndef _WIN32
JEMALLOC_FORMAT_PRINTF(1, 2)
static int
prof_open_maps(const char *format, ...) {
int mfd;
va_list ap;
char filename[PATH_MAX + 1];
va_start(ap, format);
malloc_vsnprintf(filename, sizeof(filename), format, ap);
va_end(ap);
#if defined(O_CLOEXEC)
mfd = open(filename, O_RDONLY | O_CLOEXEC);
#else
mfd = open(filename, O_RDONLY);
if (mfd != -1) {
fcntl(mfd, F_SETFD, fcntl(mfd, F_GETFD) | FD_CLOEXEC);
}
#endif
return mfd;
}
#endif
static bool
prof_dump_maps(bool propagate_err) {
bool ret;
int mfd;
cassert(config_prof);
#ifdef __FreeBSD__
mfd = prof_open_maps("/proc/curproc/map");
#elif defined(_WIN32)
mfd = -1; // Not implemented
#else
{
int pid = prof_getpid();
mfd = prof_open_maps("/proc/%d/task/%d/maps", pid, pid);
if (mfd == -1) {
mfd = prof_open_maps("/proc/%d/maps", pid);
}
}
#endif
if (mfd != -1) {
ssize_t nread;
if (prof_dump_write(propagate_err, "\nMAPPED_LIBRARIES:\n") &&
propagate_err) {
ret = true;
goto label_return;
}
nread = 0;
do {
prof_dump_buf_end += nread;
if (prof_dump_buf_end == PROF_DUMP_BUFSIZE) {
/* Make space in prof_dump_buf before read(). */
if (prof_dump_flush(propagate_err) &&
propagate_err) {
ret = true;
goto label_return;
}
}
nread = malloc_read_fd(mfd,
&prof_dump_buf[prof_dump_buf_end], PROF_DUMP_BUFSIZE
- prof_dump_buf_end);
} while (nread > 0);
} else {
ret = true;
goto label_return;
}
ret = false;
label_return:
if (mfd != -1) {
close(mfd);
}
return ret;
}
/*
* See prof_sample_threshold_update() comment for why the body of this function
* is conditionally compiled.
*/
static void
prof_leakcheck(const prof_cnt_t *cnt_all, size_t leak_ngctx,
const char *filename) {
#ifdef JEMALLOC_PROF
/*
* Scaling is equivalent AdjustSamples() in jeprof, but the result may
* differ slightly from what jeprof reports, because here we scale the
* summary values, whereas jeprof scales each context individually and
* reports the sums of the scaled values.
*/
if (cnt_all->curbytes != 0) {
double sample_period = (double)((uint64_t)1 << lg_prof_sample);
double ratio = (((double)cnt_all->curbytes) /
(double)cnt_all->curobjs) / sample_period;
double scale_factor = 1.0 / (1.0 - exp(-ratio));
uint64_t curbytes = (uint64_t)round(((double)cnt_all->curbytes)
* scale_factor);
uint64_t curobjs = (uint64_t)round(((double)cnt_all->curobjs) *
scale_factor);
malloc_printf("<jemalloc>: Leak approximation summary: ~%"FMTu64
" byte%s, ~%"FMTu64" object%s, >= %zu context%s\n",
curbytes, (curbytes != 1) ? "s" : "", curobjs, (curobjs !=
1) ? "s" : "", leak_ngctx, (leak_ngctx != 1) ? "s" : "");
malloc_printf(
"<jemalloc>: Run jeprof on \"%s\" for leak detail\n",
filename);
}
#endif
}
struct prof_gctx_dump_iter_arg_s {
tsdn_t *tsdn;
bool propagate_err;
};
static prof_gctx_t *
prof_gctx_dump_iter(prof_gctx_tree_t *gctxs, prof_gctx_t *gctx, void *opaque) {
prof_gctx_t *ret;
struct prof_gctx_dump_iter_arg_s *arg =
(struct prof_gctx_dump_iter_arg_s *)opaque;
malloc_mutex_lock(arg->tsdn, gctx->lock);
if (prof_dump_gctx(arg->tsdn, arg->propagate_err, gctx, &gctx->bt,
gctxs)) {
ret = gctx;
goto label_return;
}
ret = NULL;
label_return:
malloc_mutex_unlock(arg->tsdn, gctx->lock);
return ret;
}
static void
prof_dump_prep(tsd_t *tsd, prof_tdata_t *tdata,
struct prof_tdata_merge_iter_arg_s *prof_tdata_merge_iter_arg,
struct prof_gctx_merge_iter_arg_s *prof_gctx_merge_iter_arg,
prof_gctx_tree_t *gctxs) {
size_t tabind;
union {
prof_gctx_t *p;
void *v;
} gctx;
prof_enter(tsd, tdata);
/*
* Put gctx's in limbo and clear their counters in preparation for
* summing.
*/
gctx_tree_new(gctxs);
for (tabind = 0; !ckh_iter(&bt2gctx, &tabind, NULL, &gctx.v);) {
prof_dump_gctx_prep(tsd_tsdn(tsd), gctx.p, gctxs);
}
/*
* Iterate over tdatas, and for the non-expired ones snapshot their tctx
* stats and merge them into the associated gctx's.
*/
prof_tdata_merge_iter_arg->tsdn = tsd_tsdn(tsd);
memset(&prof_tdata_merge_iter_arg->cnt_all, 0, sizeof(prof_cnt_t));
malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
tdata_tree_iter(&tdatas, NULL, prof_tdata_merge_iter,
(void *)prof_tdata_merge_iter_arg);
malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
/* Merge tctx stats into gctx's. */
prof_gctx_merge_iter_arg->tsdn = tsd_tsdn(tsd);
prof_gctx_merge_iter_arg->leak_ngctx = 0;
gctx_tree_iter(gctxs, NULL, prof_gctx_merge_iter,
(void *)prof_gctx_merge_iter_arg);
prof_leave(tsd, tdata);
}
static bool
prof_dump_file(tsd_t *tsd, bool propagate_err, const char *filename,
bool leakcheck, prof_tdata_t *tdata,
struct prof_tdata_merge_iter_arg_s *prof_tdata_merge_iter_arg,
struct prof_gctx_merge_iter_arg_s *prof_gctx_merge_iter_arg,
struct prof_gctx_dump_iter_arg_s *prof_gctx_dump_iter_arg,
prof_gctx_tree_t *gctxs) {
/* Create dump file. */
if ((prof_dump_fd = prof_dump_open(propagate_err, filename)) == -1) {
return true;
}
/* Dump profile header. */
if (prof_dump_header(tsd_tsdn(tsd), propagate_err,
&prof_tdata_merge_iter_arg->cnt_all)) {
goto label_write_error;
}
/* Dump per gctx profile stats. */
prof_gctx_dump_iter_arg->tsdn = tsd_tsdn(tsd);
prof_gctx_dump_iter_arg->propagate_err = propagate_err;
if (gctx_tree_iter(gctxs, NULL, prof_gctx_dump_iter,
(void *)prof_gctx_dump_iter_arg) != NULL) {
goto label_write_error;
}
/* Dump /proc/<pid>/maps if possible. */
if (prof_dump_maps(propagate_err)) {
goto label_write_error;
}
if (prof_dump_close(propagate_err)) {
return true;
}
return false;
label_write_error:
prof_dump_close(propagate_err);
return true;
}
bool
prof_dump(tsd_t *tsd, bool propagate_err, const char *filename,
bool leakcheck) {
cassert(config_prof);
assert(tsd_reentrancy_level_get(tsd) == 0);
prof_tdata_t * tdata = prof_tdata_get(tsd, true);
if (tdata == NULL) {
return true;
}
pre_reentrancy(tsd, NULL);
malloc_mutex_lock(tsd_tsdn(tsd), &prof_dump_mtx);
prof_gctx_tree_t gctxs;
struct prof_tdata_merge_iter_arg_s prof_tdata_merge_iter_arg;
struct prof_gctx_merge_iter_arg_s prof_gctx_merge_iter_arg;
struct prof_gctx_dump_iter_arg_s prof_gctx_dump_iter_arg;
prof_dump_prep(tsd, tdata, &prof_tdata_merge_iter_arg,
&prof_gctx_merge_iter_arg, &gctxs);
bool err = prof_dump_file(tsd, propagate_err, filename, leakcheck, tdata,
&prof_tdata_merge_iter_arg, &prof_gctx_merge_iter_arg,
&prof_gctx_dump_iter_arg, &gctxs);
prof_gctx_finish(tsd, &gctxs);
malloc_mutex_unlock(tsd_tsdn(tsd), &prof_dump_mtx);
post_reentrancy(tsd);
if (err) {
return true;
}
if (leakcheck) {
prof_leakcheck(&prof_tdata_merge_iter_arg.cnt_all,
prof_gctx_merge_iter_arg.leak_ngctx, filename);
}
return false;
}
#ifdef JEMALLOC_JET
void
prof_cnt_all(uint64_t *curobjs, uint64_t *curbytes, uint64_t *accumobjs,
uint64_t *accumbytes) {
tsd_t *tsd;
prof_tdata_t *tdata;
struct prof_tdata_merge_iter_arg_s prof_tdata_merge_iter_arg;
struct prof_gctx_merge_iter_arg_s prof_gctx_merge_iter_arg;
prof_gctx_tree_t gctxs;
tsd = tsd_fetch();
tdata = prof_tdata_get(tsd, false);
if (tdata == NULL) {
if (curobjs != NULL) {
*curobjs = 0;
}
if (curbytes != NULL) {
*curbytes = 0;
}
if (accumobjs != NULL) {
*accumobjs = 0;
}
if (accumbytes != NULL) {
*accumbytes = 0;
}
return;
}
prof_dump_prep(tsd, tdata, &prof_tdata_merge_iter_arg,
&prof_gctx_merge_iter_arg, &gctxs);
prof_gctx_finish(tsd, &gctxs);
if (curobjs != NULL) {
*curobjs = prof_tdata_merge_iter_arg.cnt_all.curobjs;
}
if (curbytes != NULL) {
*curbytes = prof_tdata_merge_iter_arg.cnt_all.curbytes;
}
if (accumobjs != NULL) {
*accumobjs = prof_tdata_merge_iter_arg.cnt_all.accumobjs;
}
if (accumbytes != NULL) {
*accumbytes = prof_tdata_merge_iter_arg.cnt_all.accumbytes;
}
}
#endif
void
prof_bt_hash(const void *key, size_t r_hash[2]) {
prof_bt_t *bt = (prof_bt_t *)key;
cassert(config_prof);
hash(bt->vec, bt->len * sizeof(void *), 0x94122f33U, r_hash);
}
bool
prof_bt_keycomp(const void *k1, const void *k2) {
const prof_bt_t *bt1 = (prof_bt_t *)k1;
const prof_bt_t *bt2 = (prof_bt_t *)k2;
cassert(config_prof);
if (bt1->len != bt2->len) {
return false;
}
return (memcmp(bt1->vec, bt2->vec, bt1->len * sizeof(void *)) == 0);
}
prof_tdata_t *
prof_tdata_init_impl(tsd_t *tsd, uint64_t thr_uid, uint64_t thr_discrim,
char *thread_name, bool active, bool reset_interval) {
assert(tsd_reentrancy_level_get(tsd) == 0);
prof_tdata_t *tdata;
cassert(config_prof);
/* Initialize an empty cache for this thread. */
tdata = (prof_tdata_t *)iallocztm(tsd_tsdn(tsd), sizeof(prof_tdata_t),
sz_size2index(sizeof(prof_tdata_t)), false, NULL, true,
arena_get(TSDN_NULL, 0, true), true);
if (tdata == NULL) {
return NULL;
}
tdata->lock = prof_tdata_mutex_choose(thr_uid);
tdata->thr_uid = thr_uid;
tdata->thr_discrim = thr_discrim;
tdata->thread_name = thread_name;
tdata->attached = true;
tdata->expired = false;
tdata->tctx_uid_next = 0;
if (ckh_new(tsd, &tdata->bt2tctx, PROF_CKH_MINITEMS, prof_bt_hash,
prof_bt_keycomp)) {
idalloctm(tsd_tsdn(tsd), tdata, NULL, NULL, true, true);
return NULL;
}
if (reset_interval) {
prof_sample_threshold_update(tsd);
}
tdata->enq = false;
tdata->enq_idump = false;
tdata->enq_gdump = false;
tdata->dumping = false;
tdata->active = active;
malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
tdata_tree_insert(&tdatas, tdata);
malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
return tdata;
}
static bool
prof_tdata_should_destroy_unlocked(prof_tdata_t *tdata, bool even_if_attached) {
if (tdata->attached && !even_if_attached) {
return false;
}
if (ckh_count(&tdata->bt2tctx) != 0) {
return false;
}
return true;
}
static bool
prof_tdata_should_destroy(tsdn_t *tsdn, prof_tdata_t *tdata,
bool even_if_attached) {
malloc_mutex_assert_owner(tsdn, tdata->lock);
return prof_tdata_should_destroy_unlocked(tdata, even_if_attached);
}
static void
prof_tdata_destroy_locked(tsd_t *tsd, prof_tdata_t *tdata,
bool even_if_attached) {
malloc_mutex_assert_owner(tsd_tsdn(tsd), &tdatas_mtx);
tdata_tree_remove(&tdatas, tdata);
assert(prof_tdata_should_destroy_unlocked(tdata, even_if_attached));
if (tdata->thread_name != NULL) {
idalloctm(tsd_tsdn(tsd), tdata->thread_name, NULL, NULL, true,
true);
}
ckh_delete(tsd, &tdata->bt2tctx);
idalloctm(tsd_tsdn(tsd), tdata, NULL, NULL, true, true);
}
static void
prof_tdata_destroy(tsd_t *tsd, prof_tdata_t *tdata, bool even_if_attached) {
malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
prof_tdata_destroy_locked(tsd, tdata, even_if_attached);
malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
}
void
prof_tdata_detach(tsd_t *tsd, prof_tdata_t *tdata) {
bool destroy_tdata;
malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock);
if (tdata->attached) {
destroy_tdata = prof_tdata_should_destroy(tsd_tsdn(tsd), tdata,
true);
/*
* Only detach if !destroy_tdata, because detaching would allow
* another thread to win the race to destroy tdata.
*/
if (!destroy_tdata) {
tdata->attached = false;
}
tsd_prof_tdata_set(tsd, NULL);
} else {
destroy_tdata = false;
}
malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
if (destroy_tdata) {
prof_tdata_destroy(tsd, tdata, true);
}
}
static bool
prof_tdata_expire(tsdn_t *tsdn, prof_tdata_t *tdata) {
bool destroy_tdata;
malloc_mutex_lock(tsdn, tdata->lock);
if (!tdata->expired) {
tdata->expired = true;
destroy_tdata = tdata->attached ? false :
prof_tdata_should_destroy(tsdn, tdata, false);
} else {
destroy_tdata = false;
}
malloc_mutex_unlock(tsdn, tdata->lock);
return destroy_tdata;
}
static prof_tdata_t *
prof_tdata_reset_iter(prof_tdata_tree_t *tdatas, prof_tdata_t *tdata,
void *arg) {
tsdn_t *tsdn = (tsdn_t *)arg;
return (prof_tdata_expire(tsdn, tdata) ? tdata : NULL);
}
void
prof_reset(tsd_t *tsd, size_t lg_sample) {
prof_tdata_t *next;
assert(lg_sample < (sizeof(uint64_t) << 3));
malloc_mutex_lock(tsd_tsdn(tsd), &prof_dump_mtx);
malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx);
lg_prof_sample = lg_sample;
next = NULL;
do {
prof_tdata_t *to_destroy = tdata_tree_iter(&tdatas, next,
prof_tdata_reset_iter, (void *)tsd);
if (to_destroy != NULL) {
next = tdata_tree_next(&tdatas, to_destroy);
prof_tdata_destroy_locked(tsd, to_destroy, false);
} else {
next = NULL;
}
} while (next != NULL);
malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx);
malloc_mutex_unlock(tsd_tsdn(tsd), &prof_dump_mtx);
}
static bool
prof_tctx_should_destroy(tsd_t *tsd, prof_tctx_t *tctx) {
malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);
if (opt_prof_accum) {
return false;
}
if (tctx->cnts.curobjs != 0) {
return false;
}
if (tctx->prepared) {
return false;
}
return true;
}
static void
prof_tctx_destroy(tsd_t *tsd, prof_tctx_t *tctx) {
prof_tdata_t *tdata = tctx->tdata;
prof_gctx_t *gctx = tctx->gctx;
bool destroy_tdata, destroy_tctx, destroy_gctx;
malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);
assert(tctx->cnts.curobjs == 0);
assert(tctx->cnts.curbytes == 0);
assert(!opt_prof_accum);
assert(tctx->cnts.accumobjs == 0);
assert(tctx->cnts.accumbytes == 0);
ckh_remove(tsd, &tdata->bt2tctx, &gctx->bt, NULL, NULL);
destroy_tdata = prof_tdata_should_destroy(tsd_tsdn(tsd), tdata, false);
malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock);
malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock);
switch (tctx->state) {
case prof_tctx_state_nominal:
tctx_tree_remove(&gctx->tctxs, tctx);
destroy_tctx = true;
if (prof_gctx_should_destroy(gctx)) {
/*
* Increment gctx->nlimbo in order to keep another
* thread from winning the race to destroy gctx while
* this one has gctx->lock dropped. Without this, it
* would be possible for another thread to:
*
* 1) Sample an allocation associated with gctx.
* 2) Deallocate the sampled object.
* 3) Successfully prof_gctx_try_destroy(gctx).
*
* The result would be that gctx no longer exists by the
* time this thread accesses it in
* prof_gctx_try_destroy().
*/
gctx->nlimbo++;
destroy_gctx = true;
} else {
destroy_gctx = false;
}
break;
case prof_tctx_state_dumping:
/*
* A dumping thread needs tctx to remain valid until dumping
* has finished. Change state such that the dumping thread will
* complete destruction during a late dump iteration phase.
*/
tctx->state = prof_tctx_state_purgatory;
destroy_tctx = false;
destroy_gctx = false;
break;
default:
not_reached();
destroy_tctx = false;
destroy_gctx = false;
}
malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock);
if (destroy_gctx) {
prof_gctx_try_destroy(tsd, prof_tdata_get(tsd, false), gctx,
tdata);
}
malloc_mutex_assert_not_owner(tsd_tsdn(tsd), tctx->tdata->lock);
if (destroy_tdata) {
prof_tdata_destroy(tsd, tdata, false);
}
if (destroy_tctx) {
idalloctm(tsd_tsdn(tsd), tctx, NULL, NULL, true, true);
}
}
void
prof_tctx_try_destroy(tsd_t *tsd, prof_tctx_t *tctx) {
malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);
if (prof_tctx_should_destroy(tsd, tctx)) {
/* tctx->tdata->lock will be released in prof_tctx_destroy(). */
prof_tctx_destroy(tsd, tctx);
} else {
malloc_mutex_unlock(tsd_tsdn(tsd), tctx->tdata->lock);
}
}
/******************************************************************************/