server-skynet-source-3rd-je.../include/jemalloc/internal/arena.h

1448 lines
45 KiB
C

/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#define LARGE_MINCLASS (ZU(1) << LG_LARGE_MINCLASS)
/* Maximum number of regions in one run. */
#define LG_RUN_MAXREGS (LG_PAGE - LG_TINY_MIN)
#define RUN_MAXREGS (1U << LG_RUN_MAXREGS)
/*
* Minimum redzone size. Redzones may be larger than this if necessary to
* preserve region alignment.
*/
#define REDZONE_MINSIZE 16
/*
* The minimum ratio of active:dirty pages per arena is computed as:
*
* (nactive >> lg_dirty_mult) >= ndirty
*
* So, supposing that lg_dirty_mult is 3, there can be no less than 8 times as
* many active pages as dirty pages.
*/
#define LG_DIRTY_MULT_DEFAULT 3
typedef enum {
purge_mode_ratio = 0,
purge_mode_decay = 1,
purge_mode_limit = 2
} purge_mode_t;
#define PURGE_DEFAULT purge_mode_ratio
/* Default decay time in seconds. */
#define DECAY_TIME_DEFAULT 10
/* Number of event ticks between time checks. */
#define DECAY_NTICKS_PER_UPDATE 1000
typedef struct arena_runs_dirty_link_s arena_runs_dirty_link_t;
typedef struct arena_run_s arena_run_t;
typedef struct arena_chunk_map_bits_s arena_chunk_map_bits_t;
typedef struct arena_chunk_map_misc_s arena_chunk_map_misc_t;
typedef struct arena_chunk_s arena_chunk_t;
typedef struct arena_bin_info_s arena_bin_info_t;
typedef struct arena_bin_s arena_bin_t;
typedef struct arena_s arena_t;
typedef struct arena_tdata_s arena_tdata_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#ifdef JEMALLOC_ARENA_STRUCTS_A
struct arena_run_s {
/* Index of bin this run is associated with. */
szind_t binind;
/* Number of free regions in run. */
unsigned nfree;
/* Per region allocated/deallocated bitmap. */
bitmap_t bitmap[BITMAP_GROUPS_MAX];
};
/* Each element of the chunk map corresponds to one page within the chunk. */
struct arena_chunk_map_bits_s {
/*
* Run address (or size) and various flags are stored together. The bit
* layout looks like (assuming 32-bit system):
*
* ???????? ???????? ???nnnnn nnndumla
*
* ? : Unallocated: Run address for first/last pages, unset for internal
* pages.
* Small: Run page offset.
* Large: Run page count for first page, unset for trailing pages.
* n : binind for small size class, BININD_INVALID for large size class.
* d : dirty?
* u : unzeroed?
* m : decommitted?
* l : large?
* a : allocated?
*
* Following are example bit patterns for the three types of runs.
*
* p : run page offset
* s : run size
* n : binind for size class; large objects set these to BININD_INVALID
* x : don't care
* - : 0
* + : 1
* [DUMLA] : bit set
* [dumla] : bit unset
*
* Unallocated (clean):
* ssssssss ssssssss sss+++++ +++dum-a
* xxxxxxxx xxxxxxxx xxxxxxxx xxx-Uxxx
* ssssssss ssssssss sss+++++ +++dUm-a
*
* Unallocated (dirty):
* ssssssss ssssssss sss+++++ +++D-m-a
* xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
* ssssssss ssssssss sss+++++ +++D-m-a
*
* Small:
* pppppppp pppppppp pppnnnnn nnnd---A
* pppppppp pppppppp pppnnnnn nnn----A
* pppppppp pppppppp pppnnnnn nnnd---A
*
* Large:
* ssssssss ssssssss sss+++++ +++D--LA
* xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
* -------- -------- ---+++++ +++D--LA
*
* Large (sampled, size <= LARGE_MINCLASS):
* ssssssss ssssssss sssnnnnn nnnD--LA
* xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
* -------- -------- ---+++++ +++D--LA
*
* Large (not sampled, size == LARGE_MINCLASS):
* ssssssss ssssssss sss+++++ +++D--LA
* xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
* -------- -------- ---+++++ +++D--LA
*/
size_t bits;
#define CHUNK_MAP_ALLOCATED ((size_t)0x01U)
#define CHUNK_MAP_LARGE ((size_t)0x02U)
#define CHUNK_MAP_STATE_MASK ((size_t)0x3U)
#define CHUNK_MAP_DECOMMITTED ((size_t)0x04U)
#define CHUNK_MAP_UNZEROED ((size_t)0x08U)
#define CHUNK_MAP_DIRTY ((size_t)0x10U)
#define CHUNK_MAP_FLAGS_MASK ((size_t)0x1cU)
#define CHUNK_MAP_BININD_SHIFT 5
#define BININD_INVALID ((size_t)0xffU)
#define CHUNK_MAP_BININD_MASK (BININD_INVALID << CHUNK_MAP_BININD_SHIFT)
#define CHUNK_MAP_BININD_INVALID CHUNK_MAP_BININD_MASK
#define CHUNK_MAP_RUNIND_SHIFT (CHUNK_MAP_BININD_SHIFT + 8)
#define CHUNK_MAP_SIZE_SHIFT (CHUNK_MAP_RUNIND_SHIFT - LG_PAGE)
#define CHUNK_MAP_SIZE_MASK \
(~(CHUNK_MAP_BININD_MASK | CHUNK_MAP_FLAGS_MASK | CHUNK_MAP_STATE_MASK))
};
struct arena_runs_dirty_link_s {
qr(arena_runs_dirty_link_t) rd_link;
};
/*
* Each arena_chunk_map_misc_t corresponds to one page within the chunk, just
* like arena_chunk_map_bits_t. Two separate arrays are stored within each
* chunk header in order to improve cache locality.
*/
struct arena_chunk_map_misc_s {
/*
* Linkage for run trees. There are two disjoint uses:
*
* 1) arena_t's runs_avail tree.
* 2) arena_run_t conceptually uses this linkage for in-use non-full
* runs, rather than directly embedding linkage.
*/
rb_node(arena_chunk_map_misc_t) rb_link;
union {
/* Linkage for list of dirty runs. */
arena_runs_dirty_link_t rd;
/* Profile counters, used for large object runs. */
union {
void *prof_tctx_pun;
prof_tctx_t *prof_tctx;
};
/* Small region run metadata. */
arena_run_t run;
};
};
typedef rb_tree(arena_chunk_map_misc_t) arena_run_tree_t;
#endif /* JEMALLOC_ARENA_STRUCTS_A */
#ifdef JEMALLOC_ARENA_STRUCTS_B
/* Arena chunk header. */
struct arena_chunk_s {
/*
* A pointer to the arena that owns the chunk is stored within the node.
* This field as a whole is used by chunks_rtree to support both
* ivsalloc() and core-based debugging.
*/
extent_node_t node;
/*
* Map of pages within chunk that keeps track of free/large/small. The
* first map_bias entries are omitted, since the chunk header does not
* need to be tracked in the map. This omission saves a header page
* for common chunk sizes (e.g. 4 MiB).
*/
arena_chunk_map_bits_t map_bits[1]; /* Dynamically sized. */
};
/*
* Read-only information associated with each element of arena_t's bins array
* is stored separately, partly to reduce memory usage (only one copy, rather
* than one per arena), but mainly to avoid false cacheline sharing.
*
* Each run has the following layout:
*
* /--------------------\
* | pad? |
* |--------------------|
* | redzone |
* reg0_offset | region 0 |
* | redzone |
* |--------------------| \
* | redzone | |
* | region 1 | > reg_interval
* | redzone | /
* |--------------------|
* | ... |
* | ... |
* | ... |
* |--------------------|
* | redzone |
* | region nregs-1 |
* | redzone |
* |--------------------|
* | alignment pad? |
* \--------------------/
*
* reg_interval has at least the same minimum alignment as reg_size; this
* preserves the alignment constraint that sa2u() depends on. Alignment pad is
* either 0 or redzone_size; it is present only if needed to align reg0_offset.
*/
struct arena_bin_info_s {
/* Size of regions in a run for this bin's size class. */
size_t reg_size;
/* Redzone size. */
size_t redzone_size;
/* Interval between regions (reg_size + (redzone_size << 1)). */
size_t reg_interval;
/* Total size of a run for this bin's size class. */
size_t run_size;
/* Total number of regions in a run for this bin's size class. */
uint32_t nregs;
/*
* Metadata used to manipulate bitmaps for runs associated with this
* bin.
*/
bitmap_info_t bitmap_info;
/* Offset of first region in a run for this bin's size class. */
uint32_t reg0_offset;
};
struct arena_bin_s {
/*
* All operations on runcur, runs, and stats require that lock be
* locked. Run allocation/deallocation are protected by the arena lock,
* which may be acquired while holding one or more bin locks, but not
* vise versa.
*/
malloc_mutex_t lock;
/*
* Current run being used to service allocations of this bin's size
* class.
*/
arena_run_t *runcur;
/*
* Tree of non-full runs. This tree is used when looking for an
* existing run when runcur is no longer usable. We choose the
* non-full run that is lowest in memory; this policy tends to keep
* objects packed well, and it can also help reduce the number of
* almost-empty chunks.
*/
arena_run_tree_t runs;
/* Bin statistics. */
malloc_bin_stats_t stats;
};
struct arena_s {
/* This arena's index within the arenas array. */
unsigned ind;
/*
* Number of threads currently assigned to this arena. This field is
* protected by arenas_lock.
*/
unsigned nthreads;
/*
* There are three classes of arena operations from a locking
* perspective:
* 1) Thread assignment (modifies nthreads) is protected by arenas_lock.
* 2) Bin-related operations are protected by bin locks.
* 3) Chunk- and run-related operations are protected by this mutex.
*/
malloc_mutex_t lock;
arena_stats_t stats;
/*
* List of tcaches for extant threads associated with this arena.
* Stats from these are merged incrementally, and at exit if
* opt_stats_print is enabled.
*/
ql_head(tcache_t) tcache_ql;
uint64_t prof_accumbytes;
/*
* PRNG state for cache index randomization of large allocation base
* pointers.
*/
uint64_t offset_state;
dss_prec_t dss_prec;
/*
* In order to avoid rapid chunk allocation/deallocation when an arena
* oscillates right on the cusp of needing a new chunk, cache the most
* recently freed chunk. The spare is left in the arena's chunk trees
* until it is deleted.
*
* There is one spare chunk per arena, rather than one spare total, in
* order to avoid interactions between multiple threads that could make
* a single spare inadequate.
*/
arena_chunk_t *spare;
/* Minimum ratio (log base 2) of nactive:ndirty. */
ssize_t lg_dirty_mult;
/* True if a thread is currently executing arena_purge_to_limit(). */
bool purging;
/* Number of pages in active runs and huge regions. */
size_t nactive;
/*
* Current count of pages within unused runs that are potentially
* dirty, and for which madvise(... MADV_DONTNEED) has not been called.
* By tracking this, we can institute a limit on how much dirty unused
* memory is mapped for each arena.
*/
size_t ndirty;
/*
* Unused dirty memory this arena manages. Dirty memory is conceptually
* tracked as an arbitrarily interleaved LRU of dirty runs and cached
* chunks, but the list linkage is actually semi-duplicated in order to
* avoid extra arena_chunk_map_misc_t space overhead.
*
* LRU-----------------------------------------------------------MRU
*
* /-- arena ---\
* | |
* | |
* |------------| /- chunk -\
* ...->|chunks_cache|<--------------------------->| /----\ |<--...
* |------------| | |node| |
* | | | | | |
* | | /- run -\ /- run -\ | | | |
* | | | | | | | | | |
* | | | | | | | | | |
* |------------| |-------| |-------| | |----| |
* ...->|runs_dirty |<-->|rd |<-->|rd |<---->|rd |<----...
* |------------| |-------| |-------| | |----| |
* | | | | | | | | | |
* | | | | | | | \----/ |
* | | \-------/ \-------/ | |
* | | | |
* | | | |
* \------------/ \---------/
*/
arena_runs_dirty_link_t runs_dirty;
extent_node_t chunks_cache;
/*
* Approximate time in seconds from the creation of a set of unused
* dirty pages until an equivalent set of unused dirty pages is purged
* and/or reused.
*/
ssize_t decay_time;
/* decay_time / SMOOTHSTEP_NSTEPS. */
nstime_t decay_interval;
/*
* Time at which the current decay interval logically started. We do
* not actually advance to a new epoch until sometime after it starts
* because of scheduling and computation delays, and it is even possible
* to completely skip epochs. In all cases, during epoch advancement we
* merge all relevant activity into the most recently recorded epoch.
*/
nstime_t decay_epoch;
/* decay_deadline randomness generator. */
uint64_t decay_jitter_state;
/*
* Deadline for current epoch. This is the sum of decay_interval and
* per epoch jitter which is a uniform random variable in
* [0..decay_interval). Epochs always advance by precise multiples of
* decay_interval, but we randomize the deadline to reduce the
* likelihood of arenas purging in lockstep.
*/
nstime_t decay_deadline;
/*
* Number of dirty pages at beginning of current epoch. During epoch
* advancement we use the delta between decay_ndirty and ndirty to
* determine how many dirty pages, if any, were generated, and record
* the result in decay_backlog.
*/
size_t decay_ndirty;
/*
* Memoized result of arena_decay_backlog_npages_limit() corresponding
* to the current contents of decay_backlog, i.e. the limit on how many
* pages are allowed to exist for the decay epochs.
*/
size_t decay_backlog_npages_limit;
/*
* Trailing log of how many unused dirty pages were generated during
* each of the past SMOOTHSTEP_NSTEPS decay epochs, where the last
* element is the most recent epoch. Corresponding epoch times are
* relative to decay_epoch.
*/
size_t decay_backlog[SMOOTHSTEP_NSTEPS];
/* Extant huge allocations. */
ql_head(extent_node_t) huge;
/* Synchronizes all huge allocation/update/deallocation. */
malloc_mutex_t huge_mtx;
/*
* Trees of chunks that were previously allocated (trees differ only in
* node ordering). These are used when allocating chunks, in an attempt
* to re-use address space. Depending on function, different tree
* orderings are needed, which is why there are two trees with the same
* contents.
*/
extent_tree_t chunks_szad_cached;
extent_tree_t chunks_ad_cached;
extent_tree_t chunks_szad_retained;
extent_tree_t chunks_ad_retained;
malloc_mutex_t chunks_mtx;
/* Cache of nodes that were allocated via base_alloc(). */
ql_head(extent_node_t) node_cache;
malloc_mutex_t node_cache_mtx;
/* User-configurable chunk hook functions. */
chunk_hooks_t chunk_hooks;
/* bins is used to store trees of free regions. */
arena_bin_t bins[NBINS];
/*
* Quantized address-ordered trees of this arena's available runs. The
* trees are used for first-best-fit run allocation.
*/
arena_run_tree_t runs_avail[1]; /* Dynamically sized. */
};
/* Used in conjunction with tsd for fast arena-related context lookup. */
struct arena_tdata_s {
arena_t *arena;
ticker_t decay_ticker;
};
#endif /* JEMALLOC_ARENA_STRUCTS_B */
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
static const size_t large_pad =
#ifdef JEMALLOC_CACHE_OBLIVIOUS
PAGE
#else
0
#endif
;
extern purge_mode_t opt_purge;
extern const char *purge_mode_names[];
extern ssize_t opt_lg_dirty_mult;
extern ssize_t opt_decay_time;
extern arena_bin_info_t arena_bin_info[NBINS];
extern size_t map_bias; /* Number of arena chunk header pages. */
extern size_t map_misc_offset;
extern size_t arena_maxrun; /* Max run size for arenas. */
extern size_t large_maxclass; /* Max large size class. */
extern size_t run_quantize_max; /* Max run_quantize_*() input. */
extern unsigned nlclasses; /* Number of large size classes. */
extern unsigned nhclasses; /* Number of huge size classes. */
#ifdef JEMALLOC_JET
typedef size_t (run_quantize_t)(size_t);
extern run_quantize_t *run_quantize_floor;
extern run_quantize_t *run_quantize_ceil;
#endif
void arena_chunk_cache_maybe_insert(arena_t *arena, extent_node_t *node,
bool cache);
void arena_chunk_cache_maybe_remove(arena_t *arena, extent_node_t *node,
bool cache);
extent_node_t *arena_node_alloc(arena_t *arena);
void arena_node_dalloc(arena_t *arena, extent_node_t *node);
void *arena_chunk_alloc_huge(arena_t *arena, size_t usize, size_t alignment,
bool *zero);
void arena_chunk_dalloc_huge(arena_t *arena, void *chunk, size_t usize);
void arena_chunk_ralloc_huge_similar(arena_t *arena, void *chunk,
size_t oldsize, size_t usize);
void arena_chunk_ralloc_huge_shrink(arena_t *arena, void *chunk,
size_t oldsize, size_t usize);
bool arena_chunk_ralloc_huge_expand(arena_t *arena, void *chunk,
size_t oldsize, size_t usize, bool *zero);
ssize_t arena_lg_dirty_mult_get(arena_t *arena);
bool arena_lg_dirty_mult_set(arena_t *arena, ssize_t lg_dirty_mult);
ssize_t arena_decay_time_get(arena_t *arena);
bool arena_decay_time_set(arena_t *arena, ssize_t decay_time);
void arena_maybe_purge(arena_t *arena);
void arena_purge(arena_t *arena, bool all);
void arena_tcache_fill_small(tsd_t *tsd, arena_t *arena, tcache_bin_t *tbin,
szind_t binind, uint64_t prof_accumbytes);
void arena_alloc_junk_small(void *ptr, arena_bin_info_t *bin_info,
bool zero);
#ifdef JEMALLOC_JET
typedef void (arena_redzone_corruption_t)(void *, size_t, bool, size_t,
uint8_t);
extern arena_redzone_corruption_t *arena_redzone_corruption;
typedef void (arena_dalloc_junk_small_t)(void *, arena_bin_info_t *);
extern arena_dalloc_junk_small_t *arena_dalloc_junk_small;
#else
void arena_dalloc_junk_small(void *ptr, arena_bin_info_t *bin_info);
#endif
void arena_quarantine_junk_small(void *ptr, size_t usize);
void *arena_malloc_large(tsd_t *tsd, arena_t *arena, size_t size,
szind_t ind, bool zero);
void *arena_malloc_hard(tsd_t *tsd, arena_t *arena, size_t size, szind_t ind,
bool zero, tcache_t *tcache);
void *arena_palloc(tsd_t *tsd, arena_t *arena, size_t usize,
size_t alignment, bool zero, tcache_t *tcache);
void arena_prof_promoted(const void *ptr, size_t size);
void arena_dalloc_bin_junked_locked(arena_t *arena, arena_chunk_t *chunk,
void *ptr, arena_chunk_map_bits_t *bitselm);
void arena_dalloc_bin(arena_t *arena, arena_chunk_t *chunk, void *ptr,
size_t pageind, arena_chunk_map_bits_t *bitselm);
void arena_dalloc_small(tsd_t *tsd, arena_t *arena, arena_chunk_t *chunk,
void *ptr, size_t pageind);
#ifdef JEMALLOC_JET
typedef void (arena_dalloc_junk_large_t)(void *, size_t);
extern arena_dalloc_junk_large_t *arena_dalloc_junk_large;
#else
void arena_dalloc_junk_large(void *ptr, size_t usize);
#endif
void arena_dalloc_large_junked_locked(arena_t *arena, arena_chunk_t *chunk,
void *ptr);
void arena_dalloc_large(tsd_t *tsd, arena_t *arena, arena_chunk_t *chunk,
void *ptr);
#ifdef JEMALLOC_JET
typedef void (arena_ralloc_junk_large_t)(void *, size_t, size_t);
extern arena_ralloc_junk_large_t *arena_ralloc_junk_large;
#endif
bool arena_ralloc_no_move(tsd_t *tsd, void *ptr, size_t oldsize, size_t size,
size_t extra, bool zero);
void *arena_ralloc(tsd_t *tsd, arena_t *arena, void *ptr, size_t oldsize,
size_t size, size_t alignment, bool zero, tcache_t *tcache);
dss_prec_t arena_dss_prec_get(arena_t *arena);
bool arena_dss_prec_set(arena_t *arena, dss_prec_t dss_prec);
ssize_t arena_lg_dirty_mult_default_get(void);
bool arena_lg_dirty_mult_default_set(ssize_t lg_dirty_mult);
ssize_t arena_decay_time_default_get(void);
bool arena_decay_time_default_set(ssize_t decay_time);
void arena_stats_merge(arena_t *arena, const char **dss,
ssize_t *lg_dirty_mult, ssize_t *decay_time, size_t *nactive,
size_t *ndirty, arena_stats_t *astats, malloc_bin_stats_t *bstats,
malloc_large_stats_t *lstats, malloc_huge_stats_t *hstats);
arena_t *arena_new(unsigned ind);
bool arena_boot(void);
void arena_prefork(arena_t *arena);
void arena_postfork_parent(arena_t *arena);
void arena_postfork_child(arena_t *arena);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
arena_chunk_map_bits_t *arena_bitselm_get(arena_chunk_t *chunk,
size_t pageind);
arena_chunk_map_misc_t *arena_miscelm_get(arena_chunk_t *chunk,
size_t pageind);
size_t arena_miscelm_to_pageind(const arena_chunk_map_misc_t *miscelm);
void *arena_miscelm_to_rpages(arena_chunk_map_misc_t *miscelm);
arena_chunk_map_misc_t *arena_rd_to_miscelm(arena_runs_dirty_link_t *rd);
arena_chunk_map_misc_t *arena_run_to_miscelm(arena_run_t *run);
size_t *arena_mapbitsp_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbitsp_read(size_t *mapbitsp);
size_t arena_mapbits_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_size_decode(size_t mapbits);
size_t arena_mapbits_unallocated_size_get(arena_chunk_t *chunk,
size_t pageind);
size_t arena_mapbits_large_size_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_small_runind_get(arena_chunk_t *chunk, size_t pageind);
szind_t arena_mapbits_binind_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_dirty_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_unzeroed_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_decommitted_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_large_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_allocated_get(arena_chunk_t *chunk, size_t pageind);
void arena_mapbitsp_write(size_t *mapbitsp, size_t mapbits);
size_t arena_mapbits_size_encode(size_t size);
void arena_mapbits_unallocated_set(arena_chunk_t *chunk, size_t pageind,
size_t size, size_t flags);
void arena_mapbits_unallocated_size_set(arena_chunk_t *chunk, size_t pageind,
size_t size);
void arena_mapbits_internal_set(arena_chunk_t *chunk, size_t pageind,
size_t flags);
void arena_mapbits_large_set(arena_chunk_t *chunk, size_t pageind,
size_t size, size_t flags);
void arena_mapbits_large_binind_set(arena_chunk_t *chunk, size_t pageind,
szind_t binind);
void arena_mapbits_small_set(arena_chunk_t *chunk, size_t pageind,
size_t runind, szind_t binind, size_t flags);
void arena_metadata_allocated_add(arena_t *arena, size_t size);
void arena_metadata_allocated_sub(arena_t *arena, size_t size);
size_t arena_metadata_allocated_get(arena_t *arena);
bool arena_prof_accum_impl(arena_t *arena, uint64_t accumbytes);
bool arena_prof_accum_locked(arena_t *arena, uint64_t accumbytes);
bool arena_prof_accum(arena_t *arena, uint64_t accumbytes);
szind_t arena_ptr_small_binind_get(const void *ptr, size_t mapbits);
szind_t arena_bin_index(arena_t *arena, arena_bin_t *bin);
unsigned arena_run_regind(arena_run_t *run, arena_bin_info_t *bin_info,
const void *ptr);
prof_tctx_t *arena_prof_tctx_get(const void *ptr);
void arena_prof_tctx_set(const void *ptr, size_t usize, prof_tctx_t *tctx);
void arena_prof_tctx_reset(const void *ptr, size_t usize,
const void *old_ptr, prof_tctx_t *old_tctx);
void arena_decay_ticks(tsd_t *tsd, arena_t *arena, unsigned nticks);
void arena_decay_tick(tsd_t *tsd, arena_t *arena);
void *arena_malloc(tsd_t *tsd, arena_t *arena, size_t size, szind_t ind,
bool zero, tcache_t *tcache, bool slow_path);
arena_t *arena_aalloc(const void *ptr);
size_t arena_salloc(const void *ptr, bool demote);
void arena_dalloc(tsd_t *tsd, void *ptr, tcache_t *tcache, bool slow_path);
void arena_sdalloc(tsd_t *tsd, void *ptr, size_t size, tcache_t *tcache);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_ARENA_C_))
# ifdef JEMALLOC_ARENA_INLINE_A
JEMALLOC_ALWAYS_INLINE arena_chunk_map_bits_t *
arena_bitselm_get(arena_chunk_t *chunk, size_t pageind)
{
assert(pageind >= map_bias);
assert(pageind < chunk_npages);
return (&chunk->map_bits[pageind-map_bias]);
}
JEMALLOC_ALWAYS_INLINE arena_chunk_map_misc_t *
arena_miscelm_get(arena_chunk_t *chunk, size_t pageind)
{
assert(pageind >= map_bias);
assert(pageind < chunk_npages);
return ((arena_chunk_map_misc_t *)((uintptr_t)chunk +
(uintptr_t)map_misc_offset) + pageind-map_bias);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_miscelm_to_pageind(const arena_chunk_map_misc_t *miscelm)
{
arena_chunk_t *chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(miscelm);
size_t pageind = ((uintptr_t)miscelm - ((uintptr_t)chunk +
map_misc_offset)) / sizeof(arena_chunk_map_misc_t) + map_bias;
assert(pageind >= map_bias);
assert(pageind < chunk_npages);
return (pageind);
}
JEMALLOC_ALWAYS_INLINE void *
arena_miscelm_to_rpages(arena_chunk_map_misc_t *miscelm)
{
arena_chunk_t *chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(miscelm);
size_t pageind = arena_miscelm_to_pageind(miscelm);
return ((void *)((uintptr_t)chunk + (pageind << LG_PAGE)));
}
JEMALLOC_ALWAYS_INLINE arena_chunk_map_misc_t *
arena_rd_to_miscelm(arena_runs_dirty_link_t *rd)
{
arena_chunk_map_misc_t *miscelm = (arena_chunk_map_misc_t
*)((uintptr_t)rd - offsetof(arena_chunk_map_misc_t, rd));
assert(arena_miscelm_to_pageind(miscelm) >= map_bias);
assert(arena_miscelm_to_pageind(miscelm) < chunk_npages);
return (miscelm);
}
JEMALLOC_ALWAYS_INLINE arena_chunk_map_misc_t *
arena_run_to_miscelm(arena_run_t *run)
{
arena_chunk_map_misc_t *miscelm = (arena_chunk_map_misc_t
*)((uintptr_t)run - offsetof(arena_chunk_map_misc_t, run));
assert(arena_miscelm_to_pageind(miscelm) >= map_bias);
assert(arena_miscelm_to_pageind(miscelm) < chunk_npages);
return (miscelm);
}
JEMALLOC_ALWAYS_INLINE size_t *
arena_mapbitsp_get(arena_chunk_t *chunk, size_t pageind)
{
return (&arena_bitselm_get(chunk, pageind)->bits);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbitsp_read(size_t *mapbitsp)
{
return (*mapbitsp);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_get(arena_chunk_t *chunk, size_t pageind)
{
return (arena_mapbitsp_read(arena_mapbitsp_get(chunk, pageind)));
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_size_decode(size_t mapbits)
{
size_t size;
#if CHUNK_MAP_SIZE_SHIFT > 0
size = (mapbits & CHUNK_MAP_SIZE_MASK) >> CHUNK_MAP_SIZE_SHIFT;
#elif CHUNK_MAP_SIZE_SHIFT == 0
size = mapbits & CHUNK_MAP_SIZE_MASK;
#else
size = (mapbits & CHUNK_MAP_SIZE_MASK) << -CHUNK_MAP_SIZE_SHIFT;
#endif
return (size);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_unallocated_size_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
assert((mapbits & (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED)) == 0);
return (arena_mapbits_size_decode(mapbits));
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_large_size_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
assert((mapbits & (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED)) ==
(CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED));
return (arena_mapbits_size_decode(mapbits));
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_small_runind_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
assert((mapbits & (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED)) ==
CHUNK_MAP_ALLOCATED);
return (mapbits >> CHUNK_MAP_RUNIND_SHIFT);
}
JEMALLOC_ALWAYS_INLINE szind_t
arena_mapbits_binind_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
szind_t binind;
mapbits = arena_mapbits_get(chunk, pageind);
binind = (mapbits & CHUNK_MAP_BININD_MASK) >> CHUNK_MAP_BININD_SHIFT;
assert(binind < NBINS || binind == BININD_INVALID);
return (binind);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_dirty_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
assert((mapbits & CHUNK_MAP_DECOMMITTED) == 0 || (mapbits &
(CHUNK_MAP_DIRTY|CHUNK_MAP_UNZEROED)) == 0);
return (mapbits & CHUNK_MAP_DIRTY);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_unzeroed_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
assert((mapbits & CHUNK_MAP_DECOMMITTED) == 0 || (mapbits &
(CHUNK_MAP_DIRTY|CHUNK_MAP_UNZEROED)) == 0);
return (mapbits & CHUNK_MAP_UNZEROED);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_decommitted_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
assert((mapbits & CHUNK_MAP_DECOMMITTED) == 0 || (mapbits &
(CHUNK_MAP_DIRTY|CHUNK_MAP_UNZEROED)) == 0);
return (mapbits & CHUNK_MAP_DECOMMITTED);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_large_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
return (mapbits & CHUNK_MAP_LARGE);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_allocated_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
return (mapbits & CHUNK_MAP_ALLOCATED);
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbitsp_write(size_t *mapbitsp, size_t mapbits)
{
*mapbitsp = mapbits;
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_size_encode(size_t size)
{
size_t mapbits;
#if CHUNK_MAP_SIZE_SHIFT > 0
mapbits = size << CHUNK_MAP_SIZE_SHIFT;
#elif CHUNK_MAP_SIZE_SHIFT == 0
mapbits = size;
#else
mapbits = size >> -CHUNK_MAP_SIZE_SHIFT;
#endif
assert((mapbits & ~CHUNK_MAP_SIZE_MASK) == 0);
return (mapbits);
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbits_unallocated_set(arena_chunk_t *chunk, size_t pageind, size_t size,
size_t flags)
{
size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
assert((size & PAGE_MASK) == 0);
assert((flags & CHUNK_MAP_FLAGS_MASK) == flags);
assert((flags & CHUNK_MAP_DECOMMITTED) == 0 || (flags &
(CHUNK_MAP_DIRTY|CHUNK_MAP_UNZEROED)) == 0);
arena_mapbitsp_write(mapbitsp, arena_mapbits_size_encode(size) |
CHUNK_MAP_BININD_INVALID | flags);
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbits_unallocated_size_set(arena_chunk_t *chunk, size_t pageind,
size_t size)
{
size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
size_t mapbits = arena_mapbitsp_read(mapbitsp);
assert((size & PAGE_MASK) == 0);
assert((mapbits & (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED)) == 0);
arena_mapbitsp_write(mapbitsp, arena_mapbits_size_encode(size) |
(mapbits & ~CHUNK_MAP_SIZE_MASK));
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbits_internal_set(arena_chunk_t *chunk, size_t pageind, size_t flags)
{
size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
assert((flags & CHUNK_MAP_UNZEROED) == flags);
arena_mapbitsp_write(mapbitsp, flags);
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbits_large_set(arena_chunk_t *chunk, size_t pageind, size_t size,
size_t flags)
{
size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
assert((size & PAGE_MASK) == 0);
assert((flags & CHUNK_MAP_FLAGS_MASK) == flags);
assert((flags & CHUNK_MAP_DECOMMITTED) == 0 || (flags &
(CHUNK_MAP_DIRTY|CHUNK_MAP_UNZEROED)) == 0);
arena_mapbitsp_write(mapbitsp, arena_mapbits_size_encode(size) |
CHUNK_MAP_BININD_INVALID | flags | CHUNK_MAP_LARGE |
CHUNK_MAP_ALLOCATED);
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbits_large_binind_set(arena_chunk_t *chunk, size_t pageind,
szind_t binind)
{
size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
size_t mapbits = arena_mapbitsp_read(mapbitsp);
assert(binind <= BININD_INVALID);
assert(arena_mapbits_large_size_get(chunk, pageind) == LARGE_MINCLASS +
large_pad);
arena_mapbitsp_write(mapbitsp, (mapbits & ~CHUNK_MAP_BININD_MASK) |
(binind << CHUNK_MAP_BININD_SHIFT));
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbits_small_set(arena_chunk_t *chunk, size_t pageind, size_t runind,
szind_t binind, size_t flags)
{
size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
assert(binind < BININD_INVALID);
assert(pageind - runind >= map_bias);
assert((flags & CHUNK_MAP_UNZEROED) == flags);
arena_mapbitsp_write(mapbitsp, (runind << CHUNK_MAP_RUNIND_SHIFT) |
(binind << CHUNK_MAP_BININD_SHIFT) | flags | CHUNK_MAP_ALLOCATED);
}
JEMALLOC_INLINE void
arena_metadata_allocated_add(arena_t *arena, size_t size)
{
atomic_add_z(&arena->stats.metadata_allocated, size);
}
JEMALLOC_INLINE void
arena_metadata_allocated_sub(arena_t *arena, size_t size)
{
atomic_sub_z(&arena->stats.metadata_allocated, size);
}
JEMALLOC_INLINE size_t
arena_metadata_allocated_get(arena_t *arena)
{
return (atomic_read_z(&arena->stats.metadata_allocated));
}
JEMALLOC_INLINE bool
arena_prof_accum_impl(arena_t *arena, uint64_t accumbytes)
{
cassert(config_prof);
assert(prof_interval != 0);
arena->prof_accumbytes += accumbytes;
if (arena->prof_accumbytes >= prof_interval) {
arena->prof_accumbytes -= prof_interval;
return (true);
}
return (false);
}
JEMALLOC_INLINE bool
arena_prof_accum_locked(arena_t *arena, uint64_t accumbytes)
{
cassert(config_prof);
if (likely(prof_interval == 0))
return (false);
return (arena_prof_accum_impl(arena, accumbytes));
}
JEMALLOC_INLINE bool
arena_prof_accum(arena_t *arena, uint64_t accumbytes)
{
cassert(config_prof);
if (likely(prof_interval == 0))
return (false);
{
bool ret;
malloc_mutex_lock(&arena->lock);
ret = arena_prof_accum_impl(arena, accumbytes);
malloc_mutex_unlock(&arena->lock);
return (ret);
}
}
JEMALLOC_ALWAYS_INLINE szind_t
arena_ptr_small_binind_get(const void *ptr, size_t mapbits)
{
szind_t binind;
binind = (mapbits & CHUNK_MAP_BININD_MASK) >> CHUNK_MAP_BININD_SHIFT;
if (config_debug) {
arena_chunk_t *chunk;
arena_t *arena;
size_t pageind;
size_t actual_mapbits;
size_t rpages_ind;
arena_run_t *run;
arena_bin_t *bin;
szind_t run_binind, actual_binind;
arena_bin_info_t *bin_info;
arena_chunk_map_misc_t *miscelm;
void *rpages;
assert(binind != BININD_INVALID);
assert(binind < NBINS);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
arena = extent_node_arena_get(&chunk->node);
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
actual_mapbits = arena_mapbits_get(chunk, pageind);
assert(mapbits == actual_mapbits);
assert(arena_mapbits_large_get(chunk, pageind) == 0);
assert(arena_mapbits_allocated_get(chunk, pageind) != 0);
rpages_ind = pageind - arena_mapbits_small_runind_get(chunk,
pageind);
miscelm = arena_miscelm_get(chunk, rpages_ind);
run = &miscelm->run;
run_binind = run->binind;
bin = &arena->bins[run_binind];
actual_binind = (szind_t)(bin - arena->bins);
assert(run_binind == actual_binind);
bin_info = &arena_bin_info[actual_binind];
rpages = arena_miscelm_to_rpages(miscelm);
assert(((uintptr_t)ptr - ((uintptr_t)rpages +
(uintptr_t)bin_info->reg0_offset)) % bin_info->reg_interval
== 0);
}
return (binind);
}
# endif /* JEMALLOC_ARENA_INLINE_A */
# ifdef JEMALLOC_ARENA_INLINE_B
JEMALLOC_INLINE szind_t
arena_bin_index(arena_t *arena, arena_bin_t *bin)
{
szind_t binind = (szind_t)(bin - arena->bins);
assert(binind < NBINS);
return (binind);
}
JEMALLOC_INLINE unsigned
arena_run_regind(arena_run_t *run, arena_bin_info_t *bin_info, const void *ptr)
{
unsigned shift, diff, regind;
size_t interval;
arena_chunk_map_misc_t *miscelm = arena_run_to_miscelm(run);
void *rpages = arena_miscelm_to_rpages(miscelm);
/*
* Freeing a pointer lower than region zero can cause assertion
* failure.
*/
assert((uintptr_t)ptr >= (uintptr_t)rpages +
(uintptr_t)bin_info->reg0_offset);
/*
* Avoid doing division with a variable divisor if possible. Using
* actual division here can reduce allocator throughput by over 20%!
*/
diff = (unsigned)((uintptr_t)ptr - (uintptr_t)rpages -
bin_info->reg0_offset);
/* Rescale (factor powers of 2 out of the numerator and denominator). */
interval = bin_info->reg_interval;
shift = ffs_zu(interval) - 1;
diff >>= shift;
interval >>= shift;
if (interval == 1) {
/* The divisor was a power of 2. */
regind = diff;
} else {
/*
* To divide by a number D that is not a power of two we
* multiply by (2^21 / D) and then right shift by 21 positions.
*
* X / D
*
* becomes
*
* (X * interval_invs[D - 3]) >> SIZE_INV_SHIFT
*
* We can omit the first three elements, because we never
* divide by 0, and 1 and 2 are both powers of two, which are
* handled above.
*/
#define SIZE_INV_SHIFT ((sizeof(unsigned) << 3) - LG_RUN_MAXREGS)
#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s)) + 1)
static const unsigned interval_invs[] = {
SIZE_INV(3),
SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
SIZE_INV(12), SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
SIZE_INV(16), SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
SIZE_INV(20), SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
SIZE_INV(24), SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
SIZE_INV(28), SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
};
if (likely(interval <= ((sizeof(interval_invs) /
sizeof(unsigned)) + 2))) {
regind = (diff * interval_invs[interval - 3]) >>
SIZE_INV_SHIFT;
} else
regind = diff / interval;
#undef SIZE_INV
#undef SIZE_INV_SHIFT
}
assert(diff == regind * interval);
assert(regind < bin_info->nregs);
return (regind);
}
JEMALLOC_INLINE prof_tctx_t *
arena_prof_tctx_get(const void *ptr)
{
prof_tctx_t *ret;
arena_chunk_t *chunk;
cassert(config_prof);
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (likely(chunk != ptr)) {
size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
size_t mapbits = arena_mapbits_get(chunk, pageind);
assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
if (likely((mapbits & CHUNK_MAP_LARGE) == 0))
ret = (prof_tctx_t *)(uintptr_t)1U;
else {
arena_chunk_map_misc_t *elm = arena_miscelm_get(chunk,
pageind);
ret = atomic_read_p(&elm->prof_tctx_pun);
}
} else
ret = huge_prof_tctx_get(ptr);
return (ret);
}
JEMALLOC_INLINE void
arena_prof_tctx_set(const void *ptr, size_t usize, prof_tctx_t *tctx)
{
arena_chunk_t *chunk;
cassert(config_prof);
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (likely(chunk != ptr)) {
size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
assert(arena_mapbits_allocated_get(chunk, pageind) != 0);
if (unlikely(usize > SMALL_MAXCLASS || (uintptr_t)tctx >
(uintptr_t)1U)) {
arena_chunk_map_misc_t *elm;
assert(arena_mapbits_large_get(chunk, pageind) != 0);
elm = arena_miscelm_get(chunk, pageind);
atomic_write_p(&elm->prof_tctx_pun, tctx);
} else {
/*
* tctx must always be initialized for large runs.
* Assert that the surrounding conditional logic is
* equivalent to checking whether ptr refers to a large
* run.
*/
assert(arena_mapbits_large_get(chunk, pageind) == 0);
}
} else
huge_prof_tctx_set(ptr, tctx);
}
JEMALLOC_INLINE void
arena_prof_tctx_reset(const void *ptr, size_t usize, const void *old_ptr,
prof_tctx_t *old_tctx)
{
cassert(config_prof);
assert(ptr != NULL);
if (unlikely(usize > SMALL_MAXCLASS || (ptr == old_ptr &&
(uintptr_t)old_tctx > (uintptr_t)1U))) {
arena_chunk_t *chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (likely(chunk != ptr)) {
size_t pageind;
arena_chunk_map_misc_t *elm;
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
LG_PAGE;
assert(arena_mapbits_allocated_get(chunk, pageind) !=
0);
assert(arena_mapbits_large_get(chunk, pageind) != 0);
elm = arena_miscelm_get(chunk, pageind);
atomic_write_p(&elm->prof_tctx_pun,
(prof_tctx_t *)(uintptr_t)1U);
} else
huge_prof_tctx_reset(ptr);
}
}
JEMALLOC_ALWAYS_INLINE void
arena_decay_ticks(tsd_t *tsd, arena_t *arena, unsigned nticks)
{
ticker_t *decay_ticker;
if (unlikely(tsd == NULL))
return;
decay_ticker = decay_ticker_get(tsd, arena->ind);
if (unlikely(decay_ticker == NULL))
return;
if (unlikely(ticker_ticks(decay_ticker, nticks)))
arena_purge(arena, false);
}
JEMALLOC_ALWAYS_INLINE void
arena_decay_tick(tsd_t *tsd, arena_t *arena)
{
arena_decay_ticks(tsd, arena, 1);
}
JEMALLOC_ALWAYS_INLINE void *
arena_malloc(tsd_t *tsd, arena_t *arena, size_t size, szind_t ind, bool zero,
tcache_t *tcache, bool slow_path)
{
assert(size != 0);
if (likely(tcache != NULL)) {
if (likely(size <= SMALL_MAXCLASS)) {
return (tcache_alloc_small(tsd, arena, tcache, size,
ind, zero, slow_path));
}
if (likely(size <= tcache_maxclass)) {
return (tcache_alloc_large(tsd, arena, tcache, size,
ind, zero, slow_path));
}
/* (size > tcache_maxclass) case falls through. */
assert(size > tcache_maxclass);
}
return (arena_malloc_hard(tsd, arena, size, ind, zero, tcache));
}
JEMALLOC_ALWAYS_INLINE arena_t *
arena_aalloc(const void *ptr)
{
arena_chunk_t *chunk;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (likely(chunk != ptr))
return (extent_node_arena_get(&chunk->node));
else
return (huge_aalloc(ptr));
}
/* Return the size of the allocation pointed to by ptr. */
JEMALLOC_ALWAYS_INLINE size_t
arena_salloc(const void *ptr, bool demote)
{
size_t ret;
arena_chunk_t *chunk;
size_t pageind;
szind_t binind;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (likely(chunk != ptr)) {
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
assert(arena_mapbits_allocated_get(chunk, pageind) != 0);
binind = arena_mapbits_binind_get(chunk, pageind);
if (unlikely(binind == BININD_INVALID || (config_prof && !demote
&& arena_mapbits_large_get(chunk, pageind) != 0))) {
/*
* Large allocation. In the common case (demote), and
* as this is an inline function, most callers will only
* end up looking at binind to determine that ptr is a
* small allocation.
*/
assert(config_cache_oblivious || ((uintptr_t)ptr &
PAGE_MASK) == 0);
ret = arena_mapbits_large_size_get(chunk, pageind) -
large_pad;
assert(ret != 0);
assert(pageind + ((ret+large_pad)>>LG_PAGE) <=
chunk_npages);
assert(arena_mapbits_dirty_get(chunk, pageind) ==
arena_mapbits_dirty_get(chunk,
pageind+((ret+large_pad)>>LG_PAGE)-1));
} else {
/*
* Small allocation (possibly promoted to a large
* object).
*/
assert(arena_mapbits_large_get(chunk, pageind) != 0 ||
arena_ptr_small_binind_get(ptr,
arena_mapbits_get(chunk, pageind)) == binind);
ret = index2size(binind);
}
} else
ret = huge_salloc(ptr);
return (ret);
}
JEMALLOC_ALWAYS_INLINE void
arena_dalloc(tsd_t *tsd, void *ptr, tcache_t *tcache, bool slow_path)
{
arena_chunk_t *chunk;
size_t pageind, mapbits;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (likely(chunk != ptr)) {
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
mapbits = arena_mapbits_get(chunk, pageind);
assert(arena_mapbits_allocated_get(chunk, pageind) != 0);
if (likely((mapbits & CHUNK_MAP_LARGE) == 0)) {
/* Small allocation. */
if (likely(tcache != NULL)) {
szind_t binind = arena_ptr_small_binind_get(ptr,
mapbits);
tcache_dalloc_small(tsd, tcache, ptr, binind,
slow_path);
} else {
arena_dalloc_small(tsd, extent_node_arena_get(
&chunk->node), chunk, ptr, pageind);
}
} else {
size_t size = arena_mapbits_large_size_get(chunk,
pageind);
assert(config_cache_oblivious || ((uintptr_t)ptr &
PAGE_MASK) == 0);
if (likely(tcache != NULL) && size - large_pad <=
tcache_maxclass) {
tcache_dalloc_large(tsd, tcache, ptr, size -
large_pad, slow_path);
} else {
arena_dalloc_large(tsd, extent_node_arena_get(
&chunk->node), chunk, ptr);
}
}
} else
huge_dalloc(tsd, ptr, tcache);
}
JEMALLOC_ALWAYS_INLINE void
arena_sdalloc(tsd_t *tsd, void *ptr, size_t size, tcache_t *tcache)
{
arena_chunk_t *chunk;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (likely(chunk != ptr)) {
if (config_prof && opt_prof) {
size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
LG_PAGE;
assert(arena_mapbits_allocated_get(chunk, pageind) !=
0);
if (arena_mapbits_large_get(chunk, pageind) != 0) {
/*
* Make sure to use promoted size, not request
* size.
*/
size = arena_mapbits_large_size_get(chunk,
pageind) - large_pad;
}
}
assert(s2u(size) == s2u(arena_salloc(ptr, false)));
if (likely(size <= SMALL_MAXCLASS)) {
/* Small allocation. */
if (likely(tcache != NULL)) {
szind_t binind = size2index(size);
tcache_dalloc_small(tsd, tcache, ptr, binind,
true);
} else {
size_t pageind = ((uintptr_t)ptr -
(uintptr_t)chunk) >> LG_PAGE;
arena_dalloc_small(tsd, extent_node_arena_get(
&chunk->node), chunk, ptr, pageind);
}
} else {
assert(config_cache_oblivious || ((uintptr_t)ptr &
PAGE_MASK) == 0);
if (likely(tcache != NULL) && size <= tcache_maxclass) {
tcache_dalloc_large(tsd, tcache, ptr, size,
true);
} else {
arena_dalloc_large(tsd, extent_node_arena_get(
&chunk->node), chunk, ptr);
}
}
} else
huge_dalloc(tsd, ptr, tcache);
}
# endif /* JEMALLOC_ARENA_INLINE_B */
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/