d37d5adee4
Unless heap profiling is enabled, disable floating point code and don't link with libm. This, in combination with e.g. EXTRA_CFLAGS=-mno-sse on x64 systems, makes it possible to completely disable floating point register use. Some versions of glibc neglect to save/restore caller-saved floating point registers during dynamic lazy symbol loading, and the symbol loading code uses whatever malloc the application happens to have linked/loaded with, the result being potential floating point register corruption. |
||
---|---|---|
bin | ||
doc | ||
include | ||
src | ||
test | ||
.gitignore | ||
autogen.sh | ||
ChangeLog | ||
config.guess | ||
config.stamp.in | ||
config.sub | ||
configure.ac | ||
COPYING | ||
INSTALL | ||
install-sh | ||
Makefile.in | ||
README |
jemalloc is a general purpose malloc(3) implementation that emphasizes fragmentation avoidance and scalable concurrency support. jemalloc first came into use as the FreeBSD libc allocator in 2005, and since then it has found its way into numerous applications that rely on its predictable behavior. In 2010 jemalloc development efforts broadened to include developer support features such as heap profiling, Valgrind integration, and extensive monitoring/tuning hooks. Modern jemalloc releases continue to be integrated back into FreeBSD, and therefore versatility remains critical. Ongoing development efforts trend toward making jemalloc among the best allocators for a broad range of demanding applications, and eliminating/mitigating weaknesses that have practical repercussions for real world applications. The COPYING file contains copyright and licensing information. The INSTALL file contains information on how to configure, build, and install jemalloc. The ChangeLog file contains a brief summary of changes for each release. URL: http://www.canonware.com/jemalloc/