server-skynet-source-3rd-je.../src/chunk_dss.c
Jason Evans ee41ad409a Integrate whole chunks into unused dirty page purging machinery.
Extend per arena unused dirty page purging to manage unused dirty chunks
in aaddtion to unused dirty runs.  Rather than immediately unmapping
deallocated chunks (or purging them in the --disable-munmap case), store
them in a separate set of trees, chunks_[sz]ad_dirty.  Preferrentially
allocate dirty chunks.  When excessive unused dirty pages accumulate,
purge runs and chunks in ingegrated LRU order (and unmap chunks in the
--enable-munmap case).

Refactor extent_node_t to provide accessor functions.
2015-02-16 21:02:17 -08:00

214 lines
4.5 KiB
C

#define JEMALLOC_CHUNK_DSS_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
const char *dss_prec_names[] = {
"disabled",
"primary",
"secondary",
"N/A"
};
/* Current dss precedence default, used when creating new arenas. */
static dss_prec_t dss_prec_default = DSS_PREC_DEFAULT;
/*
* Protects sbrk() calls. This avoids malloc races among threads, though it
* does not protect against races with threads that call sbrk() directly.
*/
static malloc_mutex_t dss_mtx;
/* Base address of the DSS. */
static void *dss_base;
/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
static void *dss_prev;
/* Current upper limit on DSS addresses. */
static void *dss_max;
/******************************************************************************/
static void *
chunk_dss_sbrk(intptr_t increment)
{
#ifdef JEMALLOC_DSS
return (sbrk(increment));
#else
not_implemented();
return (NULL);
#endif
}
dss_prec_t
chunk_dss_prec_get(void)
{
dss_prec_t ret;
if (!have_dss)
return (dss_prec_disabled);
malloc_mutex_lock(&dss_mtx);
ret = dss_prec_default;
malloc_mutex_unlock(&dss_mtx);
return (ret);
}
bool
chunk_dss_prec_set(dss_prec_t dss_prec)
{
if (!have_dss)
return (dss_prec != dss_prec_disabled);
malloc_mutex_lock(&dss_mtx);
dss_prec_default = dss_prec;
malloc_mutex_unlock(&dss_mtx);
return (false);
}
void *
chunk_alloc_dss(arena_t *arena, void *new_addr, size_t size, size_t alignment,
bool *zero)
{
void *ret;
cassert(have_dss);
assert(size > 0 && (size & chunksize_mask) == 0);
assert(alignment > 0 && (alignment & chunksize_mask) == 0);
/*
* sbrk() uses a signed increment argument, so take care not to
* interpret a huge allocation request as a negative increment.
*/
if ((intptr_t)size < 0)
return (NULL);
malloc_mutex_lock(&dss_mtx);
if (dss_prev != (void *)-1) {
size_t gap_size, cpad_size;
void *cpad, *dss_next;
intptr_t incr;
/*
* The loop is necessary to recover from races with other
* threads that are using the DSS for something other than
* malloc.
*/
do {
/* Avoid an unnecessary system call. */
if (new_addr != NULL && dss_max != new_addr)
break;
/* Get the current end of the DSS. */
dss_max = chunk_dss_sbrk(0);
/* Make sure the earlier condition still holds. */
if (new_addr != NULL && dss_max != new_addr)
break;
/*
* Calculate how much padding is necessary to
* chunk-align the end of the DSS.
*/
gap_size = (chunksize - CHUNK_ADDR2OFFSET(dss_max)) &
chunksize_mask;
/*
* Compute how much chunk-aligned pad space (if any) is
* necessary to satisfy alignment. This space can be
* recycled for later use.
*/
cpad = (void *)((uintptr_t)dss_max + gap_size);
ret = (void *)ALIGNMENT_CEILING((uintptr_t)dss_max,
alignment);
cpad_size = (uintptr_t)ret - (uintptr_t)cpad;
dss_next = (void *)((uintptr_t)ret + size);
if ((uintptr_t)ret < (uintptr_t)dss_max ||
(uintptr_t)dss_next < (uintptr_t)dss_max) {
/* Wrap-around. */
malloc_mutex_unlock(&dss_mtx);
return (NULL);
}
incr = gap_size + cpad_size + size;
dss_prev = chunk_dss_sbrk(incr);
if (dss_prev == dss_max) {
/* Success. */
dss_max = dss_next;
malloc_mutex_unlock(&dss_mtx);
if (cpad_size != 0) {
chunk_record(arena,
&arena->chunks_szad_dss,
&arena->chunks_ad_dss, false, cpad,
cpad_size);
}
if (*zero) {
JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED(
ret, size);
memset(ret, 0, size);
}
return (ret);
}
} while (dss_prev != (void *)-1);
}
malloc_mutex_unlock(&dss_mtx);
return (NULL);
}
bool
chunk_in_dss(void *chunk)
{
bool ret;
cassert(have_dss);
malloc_mutex_lock(&dss_mtx);
if ((uintptr_t)chunk >= (uintptr_t)dss_base
&& (uintptr_t)chunk < (uintptr_t)dss_max)
ret = true;
else
ret = false;
malloc_mutex_unlock(&dss_mtx);
return (ret);
}
bool
chunk_dss_boot(void)
{
cassert(have_dss);
if (malloc_mutex_init(&dss_mtx))
return (true);
dss_base = chunk_dss_sbrk(0);
dss_prev = dss_base;
dss_max = dss_base;
return (false);
}
void
chunk_dss_prefork(void)
{
if (have_dss)
malloc_mutex_prefork(&dss_mtx);
}
void
chunk_dss_postfork_parent(void)
{
if (have_dss)
malloc_mutex_postfork_parent(&dss_mtx);
}
void
chunk_dss_postfork_child(void)
{
if (have_dss)
malloc_mutex_postfork_child(&dss_mtx);
}
/******************************************************************************/