server-skynet-source-3rd-je.../src/jemalloc.c
Qi Wang fac706836f Add opt.lg_extent_max_active_fit
When allocating from dirty extents (which we always prefer if available), large
active extents can get split even if the new allocation is much smaller, in
which case the introduced fragmentation causes high long term damage.  This new
option controls the threshold to reuse and split an existing active extent.  We
avoid using a large extent for much smaller sizes, in order to reduce
fragmentation.  In some workload, adding the threshold improves virtual memory
usage by >10x.
2017-11-16 15:32:02 -08:00

3305 lines
84 KiB
C

#define JEMALLOC_C_
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/atomic.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/extent_dss.h"
#include "jemalloc/internal/extent_mmap.h"
#include "jemalloc/internal/jemalloc_internal_types.h"
#include "jemalloc/internal/log.h"
#include "jemalloc/internal/malloc_io.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/rtree.h"
#include "jemalloc/internal/size_classes.h"
#include "jemalloc/internal/spin.h"
#include "jemalloc/internal/sz.h"
#include "jemalloc/internal/ticker.h"
#include "jemalloc/internal/util.h"
/******************************************************************************/
/* Data. */
/* Runtime configuration options. */
const char *je_malloc_conf
#ifndef _WIN32
JEMALLOC_ATTR(weak)
#endif
;
bool opt_abort =
#ifdef JEMALLOC_DEBUG
true
#else
false
#endif
;
bool opt_abort_conf =
#ifdef JEMALLOC_DEBUG
true
#else
false
#endif
;
const char *opt_junk =
#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
"true"
#else
"false"
#endif
;
bool opt_junk_alloc =
#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
true
#else
false
#endif
;
bool opt_junk_free =
#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
true
#else
false
#endif
;
bool opt_utrace = false;
bool opt_xmalloc = false;
bool opt_zero = false;
unsigned opt_narenas = 0;
unsigned ncpus;
/* Protects arenas initialization. */
malloc_mutex_t arenas_lock;
/*
* Arenas that are used to service external requests. Not all elements of the
* arenas array are necessarily used; arenas are created lazily as needed.
*
* arenas[0..narenas_auto) are used for automatic multiplexing of threads and
* arenas. arenas[narenas_auto..narenas_total) are only used if the application
* takes some action to create them and allocate from them.
*
* Points to an arena_t.
*/
JEMALLOC_ALIGNED(CACHELINE)
atomic_p_t arenas[MALLOCX_ARENA_LIMIT];
static atomic_u_t narenas_total; /* Use narenas_total_*(). */
static arena_t *a0; /* arenas[0]; read-only after initialization. */
unsigned narenas_auto; /* Read-only after initialization. */
typedef enum {
malloc_init_uninitialized = 3,
malloc_init_a0_initialized = 2,
malloc_init_recursible = 1,
malloc_init_initialized = 0 /* Common case --> jnz. */
} malloc_init_t;
static malloc_init_t malloc_init_state = malloc_init_uninitialized;
/* False should be the common case. Set to true to trigger initialization. */
bool malloc_slow = true;
/* When malloc_slow is true, set the corresponding bits for sanity check. */
enum {
flag_opt_junk_alloc = (1U),
flag_opt_junk_free = (1U << 1),
flag_opt_zero = (1U << 2),
flag_opt_utrace = (1U << 3),
flag_opt_xmalloc = (1U << 4)
};
static uint8_t malloc_slow_flags;
#ifdef JEMALLOC_THREADED_INIT
/* Used to let the initializing thread recursively allocate. */
# define NO_INITIALIZER ((unsigned long)0)
# define INITIALIZER pthread_self()
# define IS_INITIALIZER (malloc_initializer == pthread_self())
static pthread_t malloc_initializer = NO_INITIALIZER;
#else
# define NO_INITIALIZER false
# define INITIALIZER true
# define IS_INITIALIZER malloc_initializer
static bool malloc_initializer = NO_INITIALIZER;
#endif
/* Used to avoid initialization races. */
#ifdef _WIN32
#if _WIN32_WINNT >= 0x0600
static malloc_mutex_t init_lock = SRWLOCK_INIT;
#else
static malloc_mutex_t init_lock;
static bool init_lock_initialized = false;
JEMALLOC_ATTR(constructor)
static void WINAPI
_init_init_lock(void) {
/*
* If another constructor in the same binary is using mallctl to e.g.
* set up extent hooks, it may end up running before this one, and
* malloc_init_hard will crash trying to lock the uninitialized lock. So
* we force an initialization of the lock in malloc_init_hard as well.
* We don't try to care about atomicity of the accessed to the
* init_lock_initialized boolean, since it really only matters early in
* the process creation, before any separate thread normally starts
* doing anything.
*/
if (!init_lock_initialized) {
malloc_mutex_init(&init_lock, "init", WITNESS_RANK_INIT,
malloc_mutex_rank_exclusive);
}
init_lock_initialized = true;
}
#ifdef _MSC_VER
# pragma section(".CRT$XCU", read)
JEMALLOC_SECTION(".CRT$XCU") JEMALLOC_ATTR(used)
static const void (WINAPI *init_init_lock)(void) = _init_init_lock;
#endif
#endif
#else
static malloc_mutex_t init_lock = MALLOC_MUTEX_INITIALIZER;
#endif
typedef struct {
void *p; /* Input pointer (as in realloc(p, s)). */
size_t s; /* Request size. */
void *r; /* Result pointer. */
} malloc_utrace_t;
#ifdef JEMALLOC_UTRACE
# define UTRACE(a, b, c) do { \
if (unlikely(opt_utrace)) { \
int utrace_serrno = errno; \
malloc_utrace_t ut; \
ut.p = (a); \
ut.s = (b); \
ut.r = (c); \
utrace(&ut, sizeof(ut)); \
errno = utrace_serrno; \
} \
} while (0)
#else
# define UTRACE(a, b, c)
#endif
/* Whether encountered any invalid config options. */
static bool had_conf_error = false;
/******************************************************************************/
/*
* Function prototypes for static functions that are referenced prior to
* definition.
*/
static bool malloc_init_hard_a0(void);
static bool malloc_init_hard(void);
/******************************************************************************/
/*
* Begin miscellaneous support functions.
*/
bool
malloc_initialized(void) {
return (malloc_init_state == malloc_init_initialized);
}
JEMALLOC_ALWAYS_INLINE bool
malloc_init_a0(void) {
if (unlikely(malloc_init_state == malloc_init_uninitialized)) {
return malloc_init_hard_a0();
}
return false;
}
JEMALLOC_ALWAYS_INLINE bool
malloc_init(void) {
if (unlikely(!malloc_initialized()) && malloc_init_hard()) {
return true;
}
return false;
}
/*
* The a0*() functions are used instead of i{d,}alloc() in situations that
* cannot tolerate TLS variable access.
*/
static void *
a0ialloc(size_t size, bool zero, bool is_internal) {
if (unlikely(malloc_init_a0())) {
return NULL;
}
return iallocztm(TSDN_NULL, size, sz_size2index(size), zero, NULL,
is_internal, arena_get(TSDN_NULL, 0, true), true);
}
static void
a0idalloc(void *ptr, bool is_internal) {
idalloctm(TSDN_NULL, ptr, NULL, NULL, is_internal, true);
}
void *
a0malloc(size_t size) {
return a0ialloc(size, false, true);
}
void
a0dalloc(void *ptr) {
a0idalloc(ptr, true);
}
/*
* FreeBSD's libc uses the bootstrap_*() functions in bootstrap-senstive
* situations that cannot tolerate TLS variable access (TLS allocation and very
* early internal data structure initialization).
*/
void *
bootstrap_malloc(size_t size) {
if (unlikely(size == 0)) {
size = 1;
}
return a0ialloc(size, false, false);
}
void *
bootstrap_calloc(size_t num, size_t size) {
size_t num_size;
num_size = num * size;
if (unlikely(num_size == 0)) {
assert(num == 0 || size == 0);
num_size = 1;
}
return a0ialloc(num_size, true, false);
}
void
bootstrap_free(void *ptr) {
if (unlikely(ptr == NULL)) {
return;
}
a0idalloc(ptr, false);
}
void
arena_set(unsigned ind, arena_t *arena) {
atomic_store_p(&arenas[ind], arena, ATOMIC_RELEASE);
}
static void
narenas_total_set(unsigned narenas) {
atomic_store_u(&narenas_total, narenas, ATOMIC_RELEASE);
}
static void
narenas_total_inc(void) {
atomic_fetch_add_u(&narenas_total, 1, ATOMIC_RELEASE);
}
unsigned
narenas_total_get(void) {
return atomic_load_u(&narenas_total, ATOMIC_ACQUIRE);
}
/* Create a new arena and insert it into the arenas array at index ind. */
static arena_t *
arena_init_locked(tsdn_t *tsdn, unsigned ind, extent_hooks_t *extent_hooks) {
arena_t *arena;
assert(ind <= narenas_total_get());
if (ind >= MALLOCX_ARENA_LIMIT) {
return NULL;
}
if (ind == narenas_total_get()) {
narenas_total_inc();
}
/*
* Another thread may have already initialized arenas[ind] if it's an
* auto arena.
*/
arena = arena_get(tsdn, ind, false);
if (arena != NULL) {
assert(ind < narenas_auto);
return arena;
}
/* Actually initialize the arena. */
arena = arena_new(tsdn, ind, extent_hooks);
return arena;
}
static void
arena_new_create_background_thread(tsdn_t *tsdn, unsigned ind) {
if (ind == 0) {
return;
}
if (have_background_thread) {
bool err;
malloc_mutex_lock(tsdn, &background_thread_lock);
err = background_thread_create(tsdn_tsd(tsdn), ind);
malloc_mutex_unlock(tsdn, &background_thread_lock);
if (err) {
malloc_printf("<jemalloc>: error in background thread "
"creation for arena %u. Abort.\n", ind);
abort();
}
}
}
arena_t *
arena_init(tsdn_t *tsdn, unsigned ind, extent_hooks_t *extent_hooks) {
arena_t *arena;
malloc_mutex_lock(tsdn, &arenas_lock);
arena = arena_init_locked(tsdn, ind, extent_hooks);
malloc_mutex_unlock(tsdn, &arenas_lock);
arena_new_create_background_thread(tsdn, ind);
return arena;
}
static void
arena_bind(tsd_t *tsd, unsigned ind, bool internal) {
arena_t *arena = arena_get(tsd_tsdn(tsd), ind, false);
arena_nthreads_inc(arena, internal);
if (internal) {
tsd_iarena_set(tsd, arena);
} else {
tsd_arena_set(tsd, arena);
}
}
void
arena_migrate(tsd_t *tsd, unsigned oldind, unsigned newind) {
arena_t *oldarena, *newarena;
oldarena = arena_get(tsd_tsdn(tsd), oldind, false);
newarena = arena_get(tsd_tsdn(tsd), newind, false);
arena_nthreads_dec(oldarena, false);
arena_nthreads_inc(newarena, false);
tsd_arena_set(tsd, newarena);
}
static void
arena_unbind(tsd_t *tsd, unsigned ind, bool internal) {
arena_t *arena;
arena = arena_get(tsd_tsdn(tsd), ind, false);
arena_nthreads_dec(arena, internal);
if (internal) {
tsd_iarena_set(tsd, NULL);
} else {
tsd_arena_set(tsd, NULL);
}
}
arena_tdata_t *
arena_tdata_get_hard(tsd_t *tsd, unsigned ind) {
arena_tdata_t *tdata, *arenas_tdata_old;
arena_tdata_t *arenas_tdata = tsd_arenas_tdata_get(tsd);
unsigned narenas_tdata_old, i;
unsigned narenas_tdata = tsd_narenas_tdata_get(tsd);
unsigned narenas_actual = narenas_total_get();
/*
* Dissociate old tdata array (and set up for deallocation upon return)
* if it's too small.
*/
if (arenas_tdata != NULL && narenas_tdata < narenas_actual) {
arenas_tdata_old = arenas_tdata;
narenas_tdata_old = narenas_tdata;
arenas_tdata = NULL;
narenas_tdata = 0;
tsd_arenas_tdata_set(tsd, arenas_tdata);
tsd_narenas_tdata_set(tsd, narenas_tdata);
} else {
arenas_tdata_old = NULL;
narenas_tdata_old = 0;
}
/* Allocate tdata array if it's missing. */
if (arenas_tdata == NULL) {
bool *arenas_tdata_bypassp = tsd_arenas_tdata_bypassp_get(tsd);
narenas_tdata = (ind < narenas_actual) ? narenas_actual : ind+1;
if (tsd_nominal(tsd) && !*arenas_tdata_bypassp) {
*arenas_tdata_bypassp = true;
arenas_tdata = (arena_tdata_t *)a0malloc(
sizeof(arena_tdata_t) * narenas_tdata);
*arenas_tdata_bypassp = false;
}
if (arenas_tdata == NULL) {
tdata = NULL;
goto label_return;
}
assert(tsd_nominal(tsd) && !*arenas_tdata_bypassp);
tsd_arenas_tdata_set(tsd, arenas_tdata);
tsd_narenas_tdata_set(tsd, narenas_tdata);
}
/*
* Copy to tdata array. It's possible that the actual number of arenas
* has increased since narenas_total_get() was called above, but that
* causes no correctness issues unless two threads concurrently execute
* the arenas.create mallctl, which we trust mallctl synchronization to
* prevent.
*/
/* Copy/initialize tickers. */
for (i = 0; i < narenas_actual; i++) {
if (i < narenas_tdata_old) {
ticker_copy(&arenas_tdata[i].decay_ticker,
&arenas_tdata_old[i].decay_ticker);
} else {
ticker_init(&arenas_tdata[i].decay_ticker,
DECAY_NTICKS_PER_UPDATE);
}
}
if (narenas_tdata > narenas_actual) {
memset(&arenas_tdata[narenas_actual], 0, sizeof(arena_tdata_t)
* (narenas_tdata - narenas_actual));
}
/* Read the refreshed tdata array. */
tdata = &arenas_tdata[ind];
label_return:
if (arenas_tdata_old != NULL) {
a0dalloc(arenas_tdata_old);
}
return tdata;
}
/* Slow path, called only by arena_choose(). */
arena_t *
arena_choose_hard(tsd_t *tsd, bool internal) {
arena_t *ret JEMALLOC_CC_SILENCE_INIT(NULL);
if (have_percpu_arena && PERCPU_ARENA_ENABLED(opt_percpu_arena)) {
unsigned choose = percpu_arena_choose();
ret = arena_get(tsd_tsdn(tsd), choose, true);
assert(ret != NULL);
arena_bind(tsd, arena_ind_get(ret), false);
arena_bind(tsd, arena_ind_get(ret), true);
return ret;
}
if (narenas_auto > 1) {
unsigned i, j, choose[2], first_null;
bool is_new_arena[2];
/*
* Determine binding for both non-internal and internal
* allocation.
*
* choose[0]: For application allocation.
* choose[1]: For internal metadata allocation.
*/
for (j = 0; j < 2; j++) {
choose[j] = 0;
is_new_arena[j] = false;
}
first_null = narenas_auto;
malloc_mutex_lock(tsd_tsdn(tsd), &arenas_lock);
assert(arena_get(tsd_tsdn(tsd), 0, false) != NULL);
for (i = 1; i < narenas_auto; i++) {
if (arena_get(tsd_tsdn(tsd), i, false) != NULL) {
/*
* Choose the first arena that has the lowest
* number of threads assigned to it.
*/
for (j = 0; j < 2; j++) {
if (arena_nthreads_get(arena_get(
tsd_tsdn(tsd), i, false), !!j) <
arena_nthreads_get(arena_get(
tsd_tsdn(tsd), choose[j], false),
!!j)) {
choose[j] = i;
}
}
} else if (first_null == narenas_auto) {
/*
* Record the index of the first uninitialized
* arena, in case all extant arenas are in use.
*
* NB: It is possible for there to be
* discontinuities in terms of initialized
* versus uninitialized arenas, due to the
* "thread.arena" mallctl.
*/
first_null = i;
}
}
for (j = 0; j < 2; j++) {
if (arena_nthreads_get(arena_get(tsd_tsdn(tsd),
choose[j], false), !!j) == 0 || first_null ==
narenas_auto) {
/*
* Use an unloaded arena, or the least loaded
* arena if all arenas are already initialized.
*/
if (!!j == internal) {
ret = arena_get(tsd_tsdn(tsd),
choose[j], false);
}
} else {
arena_t *arena;
/* Initialize a new arena. */
choose[j] = first_null;
arena = arena_init_locked(tsd_tsdn(tsd),
choose[j],
(extent_hooks_t *)&extent_hooks_default);
if (arena == NULL) {
malloc_mutex_unlock(tsd_tsdn(tsd),
&arenas_lock);
return NULL;
}
is_new_arena[j] = true;
if (!!j == internal) {
ret = arena;
}
}
arena_bind(tsd, choose[j], !!j);
}
malloc_mutex_unlock(tsd_tsdn(tsd), &arenas_lock);
for (j = 0; j < 2; j++) {
if (is_new_arena[j]) {
assert(choose[j] > 0);
arena_new_create_background_thread(
tsd_tsdn(tsd), choose[j]);
}
}
} else {
ret = arena_get(tsd_tsdn(tsd), 0, false);
arena_bind(tsd, 0, false);
arena_bind(tsd, 0, true);
}
return ret;
}
void
iarena_cleanup(tsd_t *tsd) {
arena_t *iarena;
iarena = tsd_iarena_get(tsd);
if (iarena != NULL) {
arena_unbind(tsd, arena_ind_get(iarena), true);
}
}
void
arena_cleanup(tsd_t *tsd) {
arena_t *arena;
arena = tsd_arena_get(tsd);
if (arena != NULL) {
arena_unbind(tsd, arena_ind_get(arena), false);
}
}
void
arenas_tdata_cleanup(tsd_t *tsd) {
arena_tdata_t *arenas_tdata;
/* Prevent tsd->arenas_tdata from being (re)created. */
*tsd_arenas_tdata_bypassp_get(tsd) = true;
arenas_tdata = tsd_arenas_tdata_get(tsd);
if (arenas_tdata != NULL) {
tsd_arenas_tdata_set(tsd, NULL);
a0dalloc(arenas_tdata);
}
}
static void
stats_print_atexit(void) {
if (config_stats) {
tsdn_t *tsdn;
unsigned narenas, i;
tsdn = tsdn_fetch();
/*
* Merge stats from extant threads. This is racy, since
* individual threads do not lock when recording tcache stats
* events. As a consequence, the final stats may be slightly
* out of date by the time they are reported, if other threads
* continue to allocate.
*/
for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
arena_t *arena = arena_get(tsdn, i, false);
if (arena != NULL) {
tcache_t *tcache;
malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx);
ql_foreach(tcache, &arena->tcache_ql, link) {
tcache_stats_merge(tsdn, tcache, arena);
}
malloc_mutex_unlock(tsdn,
&arena->tcache_ql_mtx);
}
}
}
je_malloc_stats_print(NULL, NULL, opt_stats_print_opts);
}
/*
* Ensure that we don't hold any locks upon entry to or exit from allocator
* code (in a "broad" sense that doesn't count a reentrant allocation as an
* entrance or exit).
*/
JEMALLOC_ALWAYS_INLINE void
check_entry_exit_locking(tsdn_t *tsdn) {
if (!config_debug) {
return;
}
if (tsdn_null(tsdn)) {
return;
}
tsd_t *tsd = tsdn_tsd(tsdn);
/*
* It's possible we hold locks at entry/exit if we're in a nested
* allocation.
*/
int8_t reentrancy_level = tsd_reentrancy_level_get(tsd);
if (reentrancy_level != 0) {
return;
}
witness_assert_lockless(tsdn_witness_tsdp_get(tsdn));
}
/*
* End miscellaneous support functions.
*/
/******************************************************************************/
/*
* Begin initialization functions.
*/
static char *
jemalloc_secure_getenv(const char *name) {
#ifdef JEMALLOC_HAVE_SECURE_GETENV
return secure_getenv(name);
#else
# ifdef JEMALLOC_HAVE_ISSETUGID
if (issetugid() != 0) {
return NULL;
}
# endif
return getenv(name);
#endif
}
static unsigned
malloc_ncpus(void) {
long result;
#ifdef _WIN32
SYSTEM_INFO si;
GetSystemInfo(&si);
result = si.dwNumberOfProcessors;
#elif defined(JEMALLOC_GLIBC_MALLOC_HOOK) && defined(CPU_COUNT)
/*
* glibc >= 2.6 has the CPU_COUNT macro.
*
* glibc's sysconf() uses isspace(). glibc allocates for the first time
* *before* setting up the isspace tables. Therefore we need a
* different method to get the number of CPUs.
*/
{
cpu_set_t set;
pthread_getaffinity_np(pthread_self(), sizeof(set), &set);
result = CPU_COUNT(&set);
}
#else
result = sysconf(_SC_NPROCESSORS_ONLN);
#endif
return ((result == -1) ? 1 : (unsigned)result);
}
static void
init_opt_stats_print_opts(const char *v, size_t vlen) {
size_t opts_len = strlen(opt_stats_print_opts);
assert(opts_len <= stats_print_tot_num_options);
for (size_t i = 0; i < vlen; i++) {
switch (v[i]) {
#define OPTION(o, v, d, s) case o: break;
STATS_PRINT_OPTIONS
#undef OPTION
default: continue;
}
if (strchr(opt_stats_print_opts, v[i]) != NULL) {
/* Ignore repeated. */
continue;
}
opt_stats_print_opts[opts_len++] = v[i];
opt_stats_print_opts[opts_len] = '\0';
assert(opts_len <= stats_print_tot_num_options);
}
assert(opts_len == strlen(opt_stats_print_opts));
}
static bool
malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p,
char const **v_p, size_t *vlen_p) {
bool accept;
const char *opts = *opts_p;
*k_p = opts;
for (accept = false; !accept;) {
switch (*opts) {
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R':
case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
case 'Y': case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
case 'm': case 'n': case 'o': case 'p': case 'q': case 'r':
case 's': case 't': case 'u': case 'v': case 'w': case 'x':
case 'y': case 'z':
case '0': case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
case '_':
opts++;
break;
case ':':
opts++;
*klen_p = (uintptr_t)opts - 1 - (uintptr_t)*k_p;
*v_p = opts;
accept = true;
break;
case '\0':
if (opts != *opts_p) {
malloc_write("<jemalloc>: Conf string ends "
"with key\n");
}
return true;
default:
malloc_write("<jemalloc>: Malformed conf string\n");
return true;
}
}
for (accept = false; !accept;) {
switch (*opts) {
case ',':
opts++;
/*
* Look ahead one character here, because the next time
* this function is called, it will assume that end of
* input has been cleanly reached if no input remains,
* but we have optimistically already consumed the
* comma if one exists.
*/
if (*opts == '\0') {
malloc_write("<jemalloc>: Conf string ends "
"with comma\n");
}
*vlen_p = (uintptr_t)opts - 1 - (uintptr_t)*v_p;
accept = true;
break;
case '\0':
*vlen_p = (uintptr_t)opts - (uintptr_t)*v_p;
accept = true;
break;
default:
opts++;
break;
}
}
*opts_p = opts;
return false;
}
static void
malloc_abort_invalid_conf(void) {
assert(opt_abort_conf);
malloc_printf("<jemalloc>: Abort (abort_conf:true) on invalid conf "
"value (see above).\n");
abort();
}
static void
malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v,
size_t vlen) {
malloc_printf("<jemalloc>: %s: %.*s:%.*s\n", msg, (int)klen, k,
(int)vlen, v);
had_conf_error = true;
if (opt_abort_conf) {
malloc_abort_invalid_conf();
}
}
static void
malloc_slow_flag_init(void) {
/*
* Combine the runtime options into malloc_slow for fast path. Called
* after processing all the options.
*/
malloc_slow_flags |= (opt_junk_alloc ? flag_opt_junk_alloc : 0)
| (opt_junk_free ? flag_opt_junk_free : 0)
| (opt_zero ? flag_opt_zero : 0)
| (opt_utrace ? flag_opt_utrace : 0)
| (opt_xmalloc ? flag_opt_xmalloc : 0);
malloc_slow = (malloc_slow_flags != 0);
}
static void
malloc_conf_init(void) {
unsigned i;
char buf[PATH_MAX + 1];
const char *opts, *k, *v;
size_t klen, vlen;
for (i = 0; i < 4; i++) {
/* Get runtime configuration. */
switch (i) {
case 0:
opts = config_malloc_conf;
break;
case 1:
if (je_malloc_conf != NULL) {
/*
* Use options that were compiled into the
* program.
*/
opts = je_malloc_conf;
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
case 2: {
ssize_t linklen = 0;
#ifndef _WIN32
int saved_errno = errno;
const char *linkname =
# ifdef JEMALLOC_PREFIX
"/etc/"JEMALLOC_PREFIX"malloc.conf"
# else
"/etc/malloc.conf"
# endif
;
/*
* Try to use the contents of the "/etc/malloc.conf"
* symbolic link's name.
*/
linklen = readlink(linkname, buf, sizeof(buf) - 1);
if (linklen == -1) {
/* No configuration specified. */
linklen = 0;
/* Restore errno. */
set_errno(saved_errno);
}
#endif
buf[linklen] = '\0';
opts = buf;
break;
} case 3: {
const char *envname =
#ifdef JEMALLOC_PREFIX
JEMALLOC_CPREFIX"MALLOC_CONF"
#else
"MALLOC_CONF"
#endif
;
if ((opts = jemalloc_secure_getenv(envname)) != NULL) {
/*
* Do nothing; opts is already initialized to
* the value of the MALLOC_CONF environment
* variable.
*/
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
} default:
not_reached();
buf[0] = '\0';
opts = buf;
}
while (*opts != '\0' && !malloc_conf_next(&opts, &k, &klen, &v,
&vlen)) {
#define CONF_MATCH(n) \
(sizeof(n)-1 == klen && strncmp(n, k, klen) == 0)
#define CONF_MATCH_VALUE(n) \
(sizeof(n)-1 == vlen && strncmp(n, v, vlen) == 0)
#define CONF_HANDLE_BOOL(o, n) \
if (CONF_MATCH(n)) { \
if (CONF_MATCH_VALUE("true")) { \
o = true; \
} else if (CONF_MATCH_VALUE("false")) { \
o = false; \
} else { \
malloc_conf_error( \
"Invalid conf value", \
k, klen, v, vlen); \
} \
continue; \
}
#define CONF_MIN_no(um, min) false
#define CONF_MIN_yes(um, min) ((um) < (min))
#define CONF_MAX_no(um, max) false
#define CONF_MAX_yes(um, max) ((um) > (max))
#define CONF_HANDLE_T_U(t, o, n, min, max, check_min, check_max, clip) \
if (CONF_MATCH(n)) { \
uintmax_t um; \
char *end; \
\
set_errno(0); \
um = malloc_strtoumax(v, &end, 0); \
if (get_errno() != 0 || (uintptr_t)end -\
(uintptr_t)v != vlen) { \
malloc_conf_error( \
"Invalid conf value", \
k, klen, v, vlen); \
} else if (clip) { \
if (CONF_MIN_##check_min(um, \
(t)(min))) { \
o = (t)(min); \
} else if ( \
CONF_MAX_##check_max(um, \
(t)(max))) { \
o = (t)(max); \
} else { \
o = (t)um; \
} \
} else { \
if (CONF_MIN_##check_min(um, \
(t)(min)) || \
CONF_MAX_##check_max(um, \
(t)(max))) { \
malloc_conf_error( \
"Out-of-range " \
"conf value", \
k, klen, v, vlen); \
} else { \
o = (t)um; \
} \
} \
continue; \
}
#define CONF_HANDLE_UNSIGNED(o, n, min, max, check_min, check_max, \
clip) \
CONF_HANDLE_T_U(unsigned, o, n, min, max, \
check_min, check_max, clip)
#define CONF_HANDLE_SIZE_T(o, n, min, max, check_min, check_max, clip) \
CONF_HANDLE_T_U(size_t, o, n, min, max, \
check_min, check_max, clip)
#define CONF_HANDLE_SSIZE_T(o, n, min, max) \
if (CONF_MATCH(n)) { \
long l; \
char *end; \
\
set_errno(0); \
l = strtol(v, &end, 0); \
if (get_errno() != 0 || (uintptr_t)end -\
(uintptr_t)v != vlen) { \
malloc_conf_error( \
"Invalid conf value", \
k, klen, v, vlen); \
} else if (l < (ssize_t)(min) || l > \
(ssize_t)(max)) { \
malloc_conf_error( \
"Out-of-range conf value", \
k, klen, v, vlen); \
} else { \
o = l; \
} \
continue; \
}
#define CONF_HANDLE_CHAR_P(o, n, d) \
if (CONF_MATCH(n)) { \
size_t cpylen = (vlen <= \
sizeof(o)-1) ? vlen : \
sizeof(o)-1; \
strncpy(o, v, cpylen); \
o[cpylen] = '\0'; \
continue; \
}
CONF_HANDLE_BOOL(opt_abort, "abort")
CONF_HANDLE_BOOL(opt_abort_conf, "abort_conf")
if (opt_abort_conf && had_conf_error) {
malloc_abort_invalid_conf();
}
if (strncmp("metadata_thp", k, klen) == 0) {
int i;
bool match = false;
for (i = 0; i < metadata_thp_mode_limit; i++) {
if (strncmp(metadata_thp_mode_names[i],
v, vlen) == 0) {
opt_metadata_thp = i;
match = true;
break;
}
}
if (!match) {
malloc_conf_error("Invalid conf value",
k, klen, v, vlen);
}
continue;
}
CONF_HANDLE_BOOL(opt_retain, "retain")
if (strncmp("dss", k, klen) == 0) {
int i;
bool match = false;
for (i = 0; i < dss_prec_limit; i++) {
if (strncmp(dss_prec_names[i], v, vlen)
== 0) {
if (extent_dss_prec_set(i)) {
malloc_conf_error(
"Error setting dss",
k, klen, v, vlen);
} else {
opt_dss =
dss_prec_names[i];
match = true;
break;
}
}
}
if (!match) {
malloc_conf_error("Invalid conf value",
k, klen, v, vlen);
}
continue;
}
CONF_HANDLE_UNSIGNED(opt_narenas, "narenas", 1,
UINT_MAX, yes, no, false)
CONF_HANDLE_SSIZE_T(opt_dirty_decay_ms,
"dirty_decay_ms", -1, NSTIME_SEC_MAX * KQU(1000) <
QU(SSIZE_MAX) ? NSTIME_SEC_MAX * KQU(1000) :
SSIZE_MAX);
CONF_HANDLE_SSIZE_T(opt_muzzy_decay_ms,
"muzzy_decay_ms", -1, NSTIME_SEC_MAX * KQU(1000) <
QU(SSIZE_MAX) ? NSTIME_SEC_MAX * KQU(1000) :
SSIZE_MAX);
CONF_HANDLE_BOOL(opt_stats_print, "stats_print")
if (CONF_MATCH("stats_print_opts")) {
init_opt_stats_print_opts(v, vlen);
continue;
}
if (config_fill) {
if (CONF_MATCH("junk")) {
if (CONF_MATCH_VALUE("true")) {
opt_junk = "true";
opt_junk_alloc = opt_junk_free =
true;
} else if (CONF_MATCH_VALUE("false")) {
opt_junk = "false";
opt_junk_alloc = opt_junk_free =
false;
} else if (CONF_MATCH_VALUE("alloc")) {
opt_junk = "alloc";
opt_junk_alloc = true;
opt_junk_free = false;
} else if (CONF_MATCH_VALUE("free")) {
opt_junk = "free";
opt_junk_alloc = false;
opt_junk_free = true;
} else {
malloc_conf_error(
"Invalid conf value", k,
klen, v, vlen);
}
continue;
}
CONF_HANDLE_BOOL(opt_zero, "zero")
}
if (config_utrace) {
CONF_HANDLE_BOOL(opt_utrace, "utrace")
}
if (config_xmalloc) {
CONF_HANDLE_BOOL(opt_xmalloc, "xmalloc")
}
CONF_HANDLE_BOOL(opt_tcache, "tcache")
CONF_HANDLE_SIZE_T(opt_lg_extent_max_active_fit,
"lg_extent_max_active_fit", 0,
(sizeof(size_t) << 3), yes, yes, false)
CONF_HANDLE_SSIZE_T(opt_lg_tcache_max, "lg_tcache_max",
-1, (sizeof(size_t) << 3) - 1)
if (strncmp("percpu_arena", k, klen) == 0) {
int i;
bool match = false;
for (i = percpu_arena_mode_names_base; i <
percpu_arena_mode_names_limit; i++) {
if (strncmp(percpu_arena_mode_names[i],
v, vlen) == 0) {
if (!have_percpu_arena) {
malloc_conf_error(
"No getcpu support",
k, klen, v, vlen);
}
opt_percpu_arena = i;
match = true;
break;
}
}
if (!match) {
malloc_conf_error("Invalid conf value",
k, klen, v, vlen);
}
continue;
}
CONF_HANDLE_BOOL(opt_background_thread,
"background_thread");
if (config_prof) {
CONF_HANDLE_BOOL(opt_prof, "prof")
CONF_HANDLE_CHAR_P(opt_prof_prefix,
"prof_prefix", "jeprof")
CONF_HANDLE_BOOL(opt_prof_active, "prof_active")
CONF_HANDLE_BOOL(opt_prof_thread_active_init,
"prof_thread_active_init")
CONF_HANDLE_SIZE_T(opt_lg_prof_sample,
"lg_prof_sample", 0, (sizeof(uint64_t) << 3)
- 1, no, yes, true)
CONF_HANDLE_BOOL(opt_prof_accum, "prof_accum")
CONF_HANDLE_SSIZE_T(opt_lg_prof_interval,
"lg_prof_interval", -1,
(sizeof(uint64_t) << 3) - 1)
CONF_HANDLE_BOOL(opt_prof_gdump, "prof_gdump")
CONF_HANDLE_BOOL(opt_prof_final, "prof_final")
CONF_HANDLE_BOOL(opt_prof_leak, "prof_leak")
}
if (config_log) {
if (CONF_MATCH("log")) {
size_t cpylen = (
vlen <= sizeof(log_var_names) ?
vlen : sizeof(log_var_names) - 1);
strncpy(log_var_names, v, cpylen);
log_var_names[cpylen] = '\0';
continue;
}
}
malloc_conf_error("Invalid conf pair", k, klen, v,
vlen);
#undef CONF_MATCH
#undef CONF_MATCH_VALUE
#undef CONF_HANDLE_BOOL
#undef CONF_MIN_no
#undef CONF_MIN_yes
#undef CONF_MAX_no
#undef CONF_MAX_yes
#undef CONF_HANDLE_T_U
#undef CONF_HANDLE_UNSIGNED
#undef CONF_HANDLE_SIZE_T
#undef CONF_HANDLE_SSIZE_T
#undef CONF_HANDLE_CHAR_P
}
}
atomic_store_b(&log_init_done, true, ATOMIC_RELEASE);
}
static bool
malloc_init_hard_needed(void) {
if (malloc_initialized() || (IS_INITIALIZER && malloc_init_state ==
malloc_init_recursible)) {
/*
* Another thread initialized the allocator before this one
* acquired init_lock, or this thread is the initializing
* thread, and it is recursively allocating.
*/
return false;
}
#ifdef JEMALLOC_THREADED_INIT
if (malloc_initializer != NO_INITIALIZER && !IS_INITIALIZER) {
/* Busy-wait until the initializing thread completes. */
spin_t spinner = SPIN_INITIALIZER;
do {
malloc_mutex_unlock(TSDN_NULL, &init_lock);
spin_adaptive(&spinner);
malloc_mutex_lock(TSDN_NULL, &init_lock);
} while (!malloc_initialized());
return false;
}
#endif
return true;
}
static bool
malloc_init_hard_a0_locked() {
malloc_initializer = INITIALIZER;
if (config_prof) {
prof_boot0();
}
malloc_conf_init();
if (opt_stats_print) {
/* Print statistics at exit. */
if (atexit(stats_print_atexit) != 0) {
malloc_write("<jemalloc>: Error in atexit()\n");
if (opt_abort) {
abort();
}
}
}
if (pages_boot()) {
return true;
}
if (base_boot(TSDN_NULL)) {
return true;
}
if (extent_boot()) {
return true;
}
if (ctl_boot()) {
return true;
}
if (config_prof) {
prof_boot1();
}
arena_boot();
if (tcache_boot(TSDN_NULL)) {
return true;
}
if (malloc_mutex_init(&arenas_lock, "arenas", WITNESS_RANK_ARENAS,
malloc_mutex_rank_exclusive)) {
return true;
}
/*
* Create enough scaffolding to allow recursive allocation in
* malloc_ncpus().
*/
narenas_auto = 1;
memset(arenas, 0, sizeof(arena_t *) * narenas_auto);
/*
* Initialize one arena here. The rest are lazily created in
* arena_choose_hard().
*/
if (arena_init(TSDN_NULL, 0, (extent_hooks_t *)&extent_hooks_default)
== NULL) {
return true;
}
a0 = arena_get(TSDN_NULL, 0, false);
malloc_init_state = malloc_init_a0_initialized;
return false;
}
static bool
malloc_init_hard_a0(void) {
bool ret;
malloc_mutex_lock(TSDN_NULL, &init_lock);
ret = malloc_init_hard_a0_locked();
malloc_mutex_unlock(TSDN_NULL, &init_lock);
return ret;
}
/* Initialize data structures which may trigger recursive allocation. */
static bool
malloc_init_hard_recursible(void) {
malloc_init_state = malloc_init_recursible;
ncpus = malloc_ncpus();
#if (defined(JEMALLOC_HAVE_PTHREAD_ATFORK) && !defined(JEMALLOC_MUTEX_INIT_CB) \
&& !defined(JEMALLOC_ZONE) && !defined(_WIN32) && \
!defined(__native_client__))
/* LinuxThreads' pthread_atfork() allocates. */
if (pthread_atfork(jemalloc_prefork, jemalloc_postfork_parent,
jemalloc_postfork_child) != 0) {
malloc_write("<jemalloc>: Error in pthread_atfork()\n");
if (opt_abort) {
abort();
}
return true;
}
#endif
if (background_thread_boot0()) {
return true;
}
return false;
}
static unsigned
malloc_narenas_default(void) {
assert(ncpus > 0);
/*
* For SMP systems, create more than one arena per CPU by
* default.
*/
if (ncpus > 1) {
return ncpus << 2;
} else {
return 1;
}
}
static percpu_arena_mode_t
percpu_arena_as_initialized(percpu_arena_mode_t mode) {
assert(!malloc_initialized());
assert(mode <= percpu_arena_disabled);
if (mode != percpu_arena_disabled) {
mode += percpu_arena_mode_enabled_base;
}
return mode;
}
static bool
malloc_init_narenas(void) {
assert(ncpus > 0);
if (opt_percpu_arena != percpu_arena_disabled) {
if (!have_percpu_arena || malloc_getcpu() < 0) {
opt_percpu_arena = percpu_arena_disabled;
malloc_printf("<jemalloc>: perCPU arena getcpu() not "
"available. Setting narenas to %u.\n", opt_narenas ?
opt_narenas : malloc_narenas_default());
if (opt_abort) {
abort();
}
} else {
if (ncpus >= MALLOCX_ARENA_LIMIT) {
malloc_printf("<jemalloc>: narenas w/ percpu"
"arena beyond limit (%d)\n", ncpus);
if (opt_abort) {
abort();
}
return true;
}
/* NB: opt_percpu_arena isn't fully initialized yet. */
if (percpu_arena_as_initialized(opt_percpu_arena) ==
per_phycpu_arena && ncpus % 2 != 0) {
malloc_printf("<jemalloc>: invalid "
"configuration -- per physical CPU arena "
"with odd number (%u) of CPUs (no hyper "
"threading?).\n", ncpus);
if (opt_abort)
abort();
}
unsigned n = percpu_arena_ind_limit(
percpu_arena_as_initialized(opt_percpu_arena));
if (opt_narenas < n) {
/*
* If narenas is specified with percpu_arena
* enabled, actual narenas is set as the greater
* of the two. percpu_arena_choose will be free
* to use any of the arenas based on CPU
* id. This is conservative (at a small cost)
* but ensures correctness.
*
* If for some reason the ncpus determined at
* boot is not the actual number (e.g. because
* of affinity setting from numactl), reserving
* narenas this way provides a workaround for
* percpu_arena.
*/
opt_narenas = n;
}
}
}
if (opt_narenas == 0) {
opt_narenas = malloc_narenas_default();
}
assert(opt_narenas > 0);
narenas_auto = opt_narenas;
/*
* Limit the number of arenas to the indexing range of MALLOCX_ARENA().
*/
if (narenas_auto >= MALLOCX_ARENA_LIMIT) {
narenas_auto = MALLOCX_ARENA_LIMIT - 1;
malloc_printf("<jemalloc>: Reducing narenas to limit (%d)\n",
narenas_auto);
}
narenas_total_set(narenas_auto);
return false;
}
static void
malloc_init_percpu(void) {
opt_percpu_arena = percpu_arena_as_initialized(opt_percpu_arena);
}
static bool
malloc_init_hard_finish(void) {
if (malloc_mutex_boot()) {
return true;
}
malloc_init_state = malloc_init_initialized;
malloc_slow_flag_init();
return false;
}
static void
malloc_init_hard_cleanup(tsdn_t *tsdn, bool reentrancy_set) {
malloc_mutex_assert_owner(tsdn, &init_lock);
malloc_mutex_unlock(tsdn, &init_lock);
if (reentrancy_set) {
assert(!tsdn_null(tsdn));
tsd_t *tsd = tsdn_tsd(tsdn);
assert(tsd_reentrancy_level_get(tsd) > 0);
post_reentrancy(tsd);
}
}
static bool
malloc_init_hard(void) {
tsd_t *tsd;
#if defined(_WIN32) && _WIN32_WINNT < 0x0600
_init_init_lock();
#endif
malloc_mutex_lock(TSDN_NULL, &init_lock);
#define UNLOCK_RETURN(tsdn, ret, reentrancy) \
malloc_init_hard_cleanup(tsdn, reentrancy); \
return ret;
if (!malloc_init_hard_needed()) {
UNLOCK_RETURN(TSDN_NULL, false, false)
}
if (malloc_init_state != malloc_init_a0_initialized &&
malloc_init_hard_a0_locked()) {
UNLOCK_RETURN(TSDN_NULL, true, false)
}
malloc_mutex_unlock(TSDN_NULL, &init_lock);
/* Recursive allocation relies on functional tsd. */
tsd = malloc_tsd_boot0();
if (tsd == NULL) {
return true;
}
if (malloc_init_hard_recursible()) {
return true;
}
malloc_mutex_lock(tsd_tsdn(tsd), &init_lock);
/* Set reentrancy level to 1 during init. */
pre_reentrancy(tsd, NULL);
/* Initialize narenas before prof_boot2 (for allocation). */
if (malloc_init_narenas() || background_thread_boot1(tsd_tsdn(tsd))) {
UNLOCK_RETURN(tsd_tsdn(tsd), true, true)
}
if (config_prof && prof_boot2(tsd)) {
UNLOCK_RETURN(tsd_tsdn(tsd), true, true)
}
malloc_init_percpu();
if (malloc_init_hard_finish()) {
UNLOCK_RETURN(tsd_tsdn(tsd), true, true)
}
post_reentrancy(tsd);
malloc_mutex_unlock(tsd_tsdn(tsd), &init_lock);
witness_assert_lockless(witness_tsd_tsdn(
tsd_witness_tsdp_get_unsafe(tsd)));
malloc_tsd_boot1();
/* Update TSD after tsd_boot1. */
tsd = tsd_fetch();
if (opt_background_thread) {
assert(have_background_thread);
/*
* Need to finish init & unlock first before creating background
* threads (pthread_create depends on malloc). ctl_init (which
* sets isthreaded) needs to be called without holding any lock.
*/
background_thread_ctl_init(tsd_tsdn(tsd));
malloc_mutex_lock(tsd_tsdn(tsd), &background_thread_lock);
bool err = background_thread_create(tsd, 0);
malloc_mutex_unlock(tsd_tsdn(tsd), &background_thread_lock);
if (err) {
return true;
}
}
#undef UNLOCK_RETURN
return false;
}
/*
* End initialization functions.
*/
/******************************************************************************/
/*
* Begin allocation-path internal functions and data structures.
*/
/*
* Settings determined by the documented behavior of the allocation functions.
*/
typedef struct static_opts_s static_opts_t;
struct static_opts_s {
/* Whether or not allocation size may overflow. */
bool may_overflow;
/* Whether or not allocations of size 0 should be treated as size 1. */
bool bump_empty_alloc;
/*
* Whether to assert that allocations are not of size 0 (after any
* bumping).
*/
bool assert_nonempty_alloc;
/*
* Whether or not to modify the 'result' argument to malloc in case of
* error.
*/
bool null_out_result_on_error;
/* Whether to set errno when we encounter an error condition. */
bool set_errno_on_error;
/*
* The minimum valid alignment for functions requesting aligned storage.
*/
size_t min_alignment;
/* The error string to use if we oom. */
const char *oom_string;
/* The error string to use if the passed-in alignment is invalid. */
const char *invalid_alignment_string;
/*
* False if we're configured to skip some time-consuming operations.
*
* This isn't really a malloc "behavior", but it acts as a useful
* summary of several other static (or at least, static after program
* initialization) options.
*/
bool slow;
};
JEMALLOC_ALWAYS_INLINE void
static_opts_init(static_opts_t *static_opts) {
static_opts->may_overflow = false;
static_opts->bump_empty_alloc = false;
static_opts->assert_nonempty_alloc = false;
static_opts->null_out_result_on_error = false;
static_opts->set_errno_on_error = false;
static_opts->min_alignment = 0;
static_opts->oom_string = "";
static_opts->invalid_alignment_string = "";
static_opts->slow = false;
}
/*
* These correspond to the macros in jemalloc/jemalloc_macros.h. Broadly, we
* should have one constant here per magic value there. Note however that the
* representations need not be related.
*/
#define TCACHE_IND_NONE ((unsigned)-1)
#define TCACHE_IND_AUTOMATIC ((unsigned)-2)
#define ARENA_IND_AUTOMATIC ((unsigned)-1)
typedef struct dynamic_opts_s dynamic_opts_t;
struct dynamic_opts_s {
void **result;
size_t num_items;
size_t item_size;
size_t alignment;
bool zero;
unsigned tcache_ind;
unsigned arena_ind;
};
JEMALLOC_ALWAYS_INLINE void
dynamic_opts_init(dynamic_opts_t *dynamic_opts) {
dynamic_opts->result = NULL;
dynamic_opts->num_items = 0;
dynamic_opts->item_size = 0;
dynamic_opts->alignment = 0;
dynamic_opts->zero = false;
dynamic_opts->tcache_ind = TCACHE_IND_AUTOMATIC;
dynamic_opts->arena_ind = ARENA_IND_AUTOMATIC;
}
/* ind is ignored if dopts->alignment > 0. */
JEMALLOC_ALWAYS_INLINE void *
imalloc_no_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd,
size_t size, size_t usize, szind_t ind) {
tcache_t *tcache;
arena_t *arena;
/* Fill in the tcache. */
if (dopts->tcache_ind == TCACHE_IND_AUTOMATIC) {
if (likely(!sopts->slow)) {
/* Getting tcache ptr unconditionally. */
tcache = tsd_tcachep_get(tsd);
assert(tcache == tcache_get(tsd));
} else {
tcache = tcache_get(tsd);
}
} else if (dopts->tcache_ind == TCACHE_IND_NONE) {
tcache = NULL;
} else {
tcache = tcaches_get(tsd, dopts->tcache_ind);
}
/* Fill in the arena. */
if (dopts->arena_ind == ARENA_IND_AUTOMATIC) {
/*
* In case of automatic arena management, we defer arena
* computation until as late as we can, hoping to fill the
* allocation out of the tcache.
*/
arena = NULL;
} else {
arena = arena_get(tsd_tsdn(tsd), dopts->arena_ind, true);
}
if (unlikely(dopts->alignment != 0)) {
return ipalloct(tsd_tsdn(tsd), usize, dopts->alignment,
dopts->zero, tcache, arena);
}
return iallocztm(tsd_tsdn(tsd), size, ind, dopts->zero, tcache, false,
arena, sopts->slow);
}
JEMALLOC_ALWAYS_INLINE void *
imalloc_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd,
size_t usize, szind_t ind) {
void *ret;
/*
* For small allocations, sampling bumps the usize. If so, we allocate
* from the ind_large bucket.
*/
szind_t ind_large;
size_t bumped_usize = usize;
if (usize <= SMALL_MAXCLASS) {
assert(((dopts->alignment == 0) ? sz_s2u(LARGE_MINCLASS) :
sz_sa2u(LARGE_MINCLASS, dopts->alignment))
== LARGE_MINCLASS);
ind_large = sz_size2index(LARGE_MINCLASS);
bumped_usize = sz_s2u(LARGE_MINCLASS);
ret = imalloc_no_sample(sopts, dopts, tsd, bumped_usize,
bumped_usize, ind_large);
if (unlikely(ret == NULL)) {
return NULL;
}
arena_prof_promote(tsd_tsdn(tsd), ret, usize);
} else {
ret = imalloc_no_sample(sopts, dopts, tsd, usize, usize, ind);
}
return ret;
}
/*
* Returns true if the allocation will overflow, and false otherwise. Sets
* *size to the product either way.
*/
JEMALLOC_ALWAYS_INLINE bool
compute_size_with_overflow(bool may_overflow, dynamic_opts_t *dopts,
size_t *size) {
/*
* This function is just num_items * item_size, except that we may have
* to check for overflow.
*/
if (!may_overflow) {
assert(dopts->num_items == 1);
*size = dopts->item_size;
return false;
}
/* A size_t with its high-half bits all set to 1. */
static const size_t high_bits = SIZE_T_MAX << (sizeof(size_t) * 8 / 2);
*size = dopts->item_size * dopts->num_items;
if (unlikely(*size == 0)) {
return (dopts->num_items != 0 && dopts->item_size != 0);
}
/*
* We got a non-zero size, but we don't know if we overflowed to get
* there. To avoid having to do a divide, we'll be clever and note that
* if both A and B can be represented in N/2 bits, then their product
* can be represented in N bits (without the possibility of overflow).
*/
if (likely((high_bits & (dopts->num_items | dopts->item_size)) == 0)) {
return false;
}
if (likely(*size / dopts->item_size == dopts->num_items)) {
return false;
}
return true;
}
JEMALLOC_ALWAYS_INLINE int
imalloc_body(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd) {
/* Where the actual allocated memory will live. */
void *allocation = NULL;
/* Filled in by compute_size_with_overflow below. */
size_t size = 0;
/*
* For unaligned allocations, we need only ind. For aligned
* allocations, or in case of stats or profiling we need usize.
*
* These are actually dead stores, in that their values are reset before
* any branch on their value is taken. Sometimes though, it's
* convenient to pass them as arguments before this point. To avoid
* undefined behavior then, we initialize them with dummy stores.
*/
szind_t ind = 0;
size_t usize = 0;
/* Reentrancy is only checked on slow path. */
int8_t reentrancy_level;
/* Compute the amount of memory the user wants. */
if (unlikely(compute_size_with_overflow(sopts->may_overflow, dopts,
&size))) {
goto label_oom;
}
/* Validate the user input. */
if (sopts->bump_empty_alloc) {
if (unlikely(size == 0)) {
size = 1;
}
}
if (sopts->assert_nonempty_alloc) {
assert (size != 0);
}
if (unlikely(dopts->alignment < sopts->min_alignment
|| (dopts->alignment & (dopts->alignment - 1)) != 0)) {
goto label_invalid_alignment;
}
/* This is the beginning of the "core" algorithm. */
if (dopts->alignment == 0) {
ind = sz_size2index(size);
if (unlikely(ind >= NSIZES)) {
goto label_oom;
}
if (config_stats || (config_prof && opt_prof)) {
usize = sz_index2size(ind);
assert(usize > 0 && usize <= LARGE_MAXCLASS);
}
} else {
usize = sz_sa2u(size, dopts->alignment);
if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
goto label_oom;
}
}
check_entry_exit_locking(tsd_tsdn(tsd));
/*
* If we need to handle reentrancy, we can do it out of a
* known-initialized arena (i.e. arena 0).
*/
reentrancy_level = tsd_reentrancy_level_get(tsd);
if (sopts->slow && unlikely(reentrancy_level > 0)) {
/*
* We should never specify particular arenas or tcaches from
* within our internal allocations.
*/
assert(dopts->tcache_ind == TCACHE_IND_AUTOMATIC ||
dopts->tcache_ind == TCACHE_IND_NONE);
assert(dopts->arena_ind == ARENA_IND_AUTOMATIC);
dopts->tcache_ind = TCACHE_IND_NONE;
/* We know that arena 0 has already been initialized. */
dopts->arena_ind = 0;
}
/* If profiling is on, get our profiling context. */
if (config_prof && opt_prof) {
/*
* Note that if we're going down this path, usize must have been
* initialized in the previous if statement.
*/
prof_tctx_t *tctx = prof_alloc_prep(
tsd, usize, prof_active_get_unlocked(), true);
alloc_ctx_t alloc_ctx;
if (likely((uintptr_t)tctx == (uintptr_t)1U)) {
alloc_ctx.slab = (usize <= SMALL_MAXCLASS);
allocation = imalloc_no_sample(
sopts, dopts, tsd, usize, usize, ind);
} else if ((uintptr_t)tctx > (uintptr_t)1U) {
/*
* Note that ind might still be 0 here. This is fine;
* imalloc_sample ignores ind if dopts->alignment > 0.
*/
allocation = imalloc_sample(
sopts, dopts, tsd, usize, ind);
alloc_ctx.slab = false;
} else {
allocation = NULL;
}
if (unlikely(allocation == NULL)) {
prof_alloc_rollback(tsd, tctx, true);
goto label_oom;
}
prof_malloc(tsd_tsdn(tsd), allocation, usize, &alloc_ctx, tctx);
} else {
/*
* If dopts->alignment > 0, then ind is still 0, but usize was
* computed in the previous if statement. Down the positive
* alignment path, imalloc_no_sample ignores ind and size
* (relying only on usize).
*/
allocation = imalloc_no_sample(sopts, dopts, tsd, size, usize,
ind);
if (unlikely(allocation == NULL)) {
goto label_oom;
}
}
/*
* Allocation has been done at this point. We still have some
* post-allocation work to do though.
*/
assert(dopts->alignment == 0
|| ((uintptr_t)allocation & (dopts->alignment - 1)) == ZU(0));
if (config_stats) {
assert(usize == isalloc(tsd_tsdn(tsd), allocation));
*tsd_thread_allocatedp_get(tsd) += usize;
}
if (sopts->slow) {
UTRACE(0, size, allocation);
}
/* Success! */
check_entry_exit_locking(tsd_tsdn(tsd));
*dopts->result = allocation;
return 0;
label_oom:
if (unlikely(sopts->slow) && config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write(sopts->oom_string);
abort();
}
if (sopts->slow) {
UTRACE(NULL, size, NULL);
}
check_entry_exit_locking(tsd_tsdn(tsd));
if (sopts->set_errno_on_error) {
set_errno(ENOMEM);
}
if (sopts->null_out_result_on_error) {
*dopts->result = NULL;
}
return ENOMEM;
/*
* This label is only jumped to by one goto; we move it out of line
* anyways to avoid obscuring the non-error paths, and for symmetry with
* the oom case.
*/
label_invalid_alignment:
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write(sopts->invalid_alignment_string);
abort();
}
if (sopts->set_errno_on_error) {
set_errno(EINVAL);
}
if (sopts->slow) {
UTRACE(NULL, size, NULL);
}
check_entry_exit_locking(tsd_tsdn(tsd));
if (sopts->null_out_result_on_error) {
*dopts->result = NULL;
}
return EINVAL;
}
/* Returns the errno-style error code of the allocation. */
JEMALLOC_ALWAYS_INLINE int
imalloc(static_opts_t *sopts, dynamic_opts_t *dopts) {
if (unlikely(!malloc_initialized()) && unlikely(malloc_init())) {
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write(sopts->oom_string);
abort();
}
UTRACE(NULL, dopts->num_items * dopts->item_size, NULL);
set_errno(ENOMEM);
*dopts->result = NULL;
return ENOMEM;
}
/* We always need the tsd. Let's grab it right away. */
tsd_t *tsd = tsd_fetch();
assert(tsd);
if (likely(tsd_fast(tsd))) {
/* Fast and common path. */
tsd_assert_fast(tsd);
sopts->slow = false;
return imalloc_body(sopts, dopts, tsd);
} else {
sopts->slow = true;
return imalloc_body(sopts, dopts, tsd);
}
}
/******************************************************************************/
/*
* Begin malloc(3)-compatible functions.
*/
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1)
je_malloc(size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.malloc.entry", "size: %zu", size);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_alloc = true;
sopts.null_out_result_on_error = true;
sopts.set_errno_on_error = true;
sopts.oom_string = "<jemalloc>: Error in malloc(): out of memory\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
imalloc(&sopts, &dopts);
LOG("core.malloc.exit", "result: %p", ret);
return ret;
}
JEMALLOC_EXPORT int JEMALLOC_NOTHROW
JEMALLOC_ATTR(nonnull(1))
je_posix_memalign(void **memptr, size_t alignment, size_t size) {
int ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.posix_memalign.entry", "mem ptr: %p, alignment: %zu, "
"size: %zu", memptr, alignment, size);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_alloc = true;
sopts.min_alignment = sizeof(void *);
sopts.oom_string =
"<jemalloc>: Error allocating aligned memory: out of memory\n";
sopts.invalid_alignment_string =
"<jemalloc>: Error allocating aligned memory: invalid alignment\n";
dopts.result = memptr;
dopts.num_items = 1;
dopts.item_size = size;
dopts.alignment = alignment;
ret = imalloc(&sopts, &dopts);
LOG("core.posix_memalign.exit", "result: %d, alloc ptr: %p", ret,
*memptr);
return ret;
}
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(2)
je_aligned_alloc(size_t alignment, size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.aligned_alloc.entry", "alignment: %zu, size: %zu\n",
alignment, size);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_alloc = true;
sopts.null_out_result_on_error = true;
sopts.set_errno_on_error = true;
sopts.min_alignment = 1;
sopts.oom_string =
"<jemalloc>: Error allocating aligned memory: out of memory\n";
sopts.invalid_alignment_string =
"<jemalloc>: Error allocating aligned memory: invalid alignment\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
dopts.alignment = alignment;
imalloc(&sopts, &dopts);
LOG("core.aligned_alloc.exit", "result: %p", ret);
return ret;
}
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE2(1, 2)
je_calloc(size_t num, size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.calloc.entry", "num: %zu, size: %zu\n", num, size);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.may_overflow = true;
sopts.bump_empty_alloc = true;
sopts.null_out_result_on_error = true;
sopts.set_errno_on_error = true;
sopts.oom_string = "<jemalloc>: Error in calloc(): out of memory\n";
dopts.result = &ret;
dopts.num_items = num;
dopts.item_size = size;
dopts.zero = true;
imalloc(&sopts, &dopts);
LOG("core.calloc.exit", "result: %p", ret);
return ret;
}
static void *
irealloc_prof_sample(tsd_t *tsd, void *old_ptr, size_t old_usize, size_t usize,
prof_tctx_t *tctx) {
void *p;
if (tctx == NULL) {
return NULL;
}
if (usize <= SMALL_MAXCLASS) {
p = iralloc(tsd, old_ptr, old_usize, LARGE_MINCLASS, 0, false);
if (p == NULL) {
return NULL;
}
arena_prof_promote(tsd_tsdn(tsd), p, usize);
} else {
p = iralloc(tsd, old_ptr, old_usize, usize, 0, false);
}
return p;
}
JEMALLOC_ALWAYS_INLINE void *
irealloc_prof(tsd_t *tsd, void *old_ptr, size_t old_usize, size_t usize,
alloc_ctx_t *alloc_ctx) {
void *p;
bool prof_active;
prof_tctx_t *old_tctx, *tctx;
prof_active = prof_active_get_unlocked();
old_tctx = prof_tctx_get(tsd_tsdn(tsd), old_ptr, alloc_ctx);
tctx = prof_alloc_prep(tsd, usize, prof_active, true);
if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
p = irealloc_prof_sample(tsd, old_ptr, old_usize, usize, tctx);
} else {
p = iralloc(tsd, old_ptr, old_usize, usize, 0, false);
}
if (unlikely(p == NULL)) {
prof_alloc_rollback(tsd, tctx, true);
return NULL;
}
prof_realloc(tsd, p, usize, tctx, prof_active, true, old_ptr, old_usize,
old_tctx);
return p;
}
JEMALLOC_ALWAYS_INLINE void
ifree(tsd_t *tsd, void *ptr, tcache_t *tcache, bool slow_path) {
if (!slow_path) {
tsd_assert_fast(tsd);
}
check_entry_exit_locking(tsd_tsdn(tsd));
if (tsd_reentrancy_level_get(tsd) != 0) {
assert(slow_path);
}
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
alloc_ctx_t alloc_ctx;
rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd);
rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx,
(uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab);
assert(alloc_ctx.szind != NSIZES);
size_t usize;
if (config_prof && opt_prof) {
usize = sz_index2size(alloc_ctx.szind);
prof_free(tsd, ptr, usize, &alloc_ctx);
} else if (config_stats) {
usize = sz_index2size(alloc_ctx.szind);
}
if (config_stats) {
*tsd_thread_deallocatedp_get(tsd) += usize;
}
if (likely(!slow_path)) {
idalloctm(tsd_tsdn(tsd), ptr, tcache, &alloc_ctx, false,
false);
} else {
idalloctm(tsd_tsdn(tsd), ptr, tcache, &alloc_ctx, false,
true);
}
}
JEMALLOC_ALWAYS_INLINE void
isfree(tsd_t *tsd, void *ptr, size_t usize, tcache_t *tcache, bool slow_path) {
if (!slow_path) {
tsd_assert_fast(tsd);
}
check_entry_exit_locking(tsd_tsdn(tsd));
if (tsd_reentrancy_level_get(tsd) != 0) {
assert(slow_path);
}
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
alloc_ctx_t alloc_ctx, *ctx;
if (!config_cache_oblivious && ((uintptr_t)ptr & PAGE_MASK) != 0) {
/*
* When cache_oblivious is disabled and ptr is not page aligned,
* the allocation was not sampled -- usize can be used to
* determine szind directly.
*/
alloc_ctx.szind = sz_size2index(usize);
alloc_ctx.slab = true;
ctx = &alloc_ctx;
if (config_debug) {
alloc_ctx_t dbg_ctx;
rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd);
rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree,
rtree_ctx, (uintptr_t)ptr, true, &dbg_ctx.szind,
&dbg_ctx.slab);
assert(dbg_ctx.szind == alloc_ctx.szind);
assert(dbg_ctx.slab == alloc_ctx.slab);
}
} else if (config_prof && opt_prof) {
rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd);
rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx,
(uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab);
assert(alloc_ctx.szind == sz_size2index(usize));
ctx = &alloc_ctx;
} else {
ctx = NULL;
}
if (config_prof && opt_prof) {
prof_free(tsd, ptr, usize, ctx);
}
if (config_stats) {
*tsd_thread_deallocatedp_get(tsd) += usize;
}
if (likely(!slow_path)) {
isdalloct(tsd_tsdn(tsd), ptr, usize, tcache, ctx, false);
} else {
isdalloct(tsd_tsdn(tsd), ptr, usize, tcache, ctx, true);
}
}
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ALLOC_SIZE(2)
je_realloc(void *ptr, size_t size) {
void *ret;
tsdn_t *tsdn JEMALLOC_CC_SILENCE_INIT(NULL);
size_t usize JEMALLOC_CC_SILENCE_INIT(0);
size_t old_usize = 0;
LOG("core.realloc.entry", "ptr: %p, size: %zu\n", ptr, size);
if (unlikely(size == 0)) {
if (ptr != NULL) {
/* realloc(ptr, 0) is equivalent to free(ptr). */
UTRACE(ptr, 0, 0);
tcache_t *tcache;
tsd_t *tsd = tsd_fetch();
if (tsd_reentrancy_level_get(tsd) == 0) {
tcache = tcache_get(tsd);
} else {
tcache = NULL;
}
ifree(tsd, ptr, tcache, true);
LOG("core.realloc.exit", "result: %p", NULL);
return NULL;
}
size = 1;
}
if (likely(ptr != NULL)) {
assert(malloc_initialized() || IS_INITIALIZER);
tsd_t *tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
alloc_ctx_t alloc_ctx;
rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd);
rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx,
(uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab);
assert(alloc_ctx.szind != NSIZES);
old_usize = sz_index2size(alloc_ctx.szind);
assert(old_usize == isalloc(tsd_tsdn(tsd), ptr));
if (config_prof && opt_prof) {
usize = sz_s2u(size);
ret = unlikely(usize == 0 || usize > LARGE_MAXCLASS) ?
NULL : irealloc_prof(tsd, ptr, old_usize, usize,
&alloc_ctx);
} else {
if (config_stats) {
usize = sz_s2u(size);
}
ret = iralloc(tsd, ptr, old_usize, size, 0, false);
}
tsdn = tsd_tsdn(tsd);
} else {
/* realloc(NULL, size) is equivalent to malloc(size). */
void *ret = je_malloc(size);
LOG("core.realloc.exit", "result: %p", ret);
return ret;
}
if (unlikely(ret == NULL)) {
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write("<jemalloc>: Error in realloc(): "
"out of memory\n");
abort();
}
set_errno(ENOMEM);
}
if (config_stats && likely(ret != NULL)) {
tsd_t *tsd;
assert(usize == isalloc(tsdn, ret));
tsd = tsdn_tsd(tsdn);
*tsd_thread_allocatedp_get(tsd) += usize;
*tsd_thread_deallocatedp_get(tsd) += old_usize;
}
UTRACE(ptr, size, ret);
check_entry_exit_locking(tsdn);
LOG("core.realloc.exit", "result: %p", ret);
return ret;
}
JEMALLOC_EXPORT void JEMALLOC_NOTHROW
je_free(void *ptr) {
LOG("core.free.entry", "ptr: %p", ptr);
UTRACE(ptr, 0, 0);
if (likely(ptr != NULL)) {
/*
* We avoid setting up tsd fully (e.g. tcache, arena binding)
* based on only free() calls -- other activities trigger the
* minimal to full transition. This is because free() may
* happen during thread shutdown after tls deallocation: if a
* thread never had any malloc activities until then, a
* fully-setup tsd won't be destructed properly.
*/
tsd_t *tsd = tsd_fetch_min();
check_entry_exit_locking(tsd_tsdn(tsd));
tcache_t *tcache;
if (likely(tsd_fast(tsd))) {
tsd_assert_fast(tsd);
/* Unconditionally get tcache ptr on fast path. */
tcache = tsd_tcachep_get(tsd);
ifree(tsd, ptr, tcache, false);
} else {
if (likely(tsd_reentrancy_level_get(tsd) == 0)) {
tcache = tcache_get(tsd);
} else {
tcache = NULL;
}
ifree(tsd, ptr, tcache, true);
}
check_entry_exit_locking(tsd_tsdn(tsd));
}
LOG("core.free.exit", "");
}
/*
* End malloc(3)-compatible functions.
*/
/******************************************************************************/
/*
* Begin non-standard override functions.
*/
#ifdef JEMALLOC_OVERRIDE_MEMALIGN
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc)
je_memalign(size_t alignment, size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.memalign.entry", "alignment: %zu, size: %zu\n", alignment,
size);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_alloc = true;
sopts.min_alignment = 1;
sopts.oom_string =
"<jemalloc>: Error allocating aligned memory: out of memory\n";
sopts.invalid_alignment_string =
"<jemalloc>: Error allocating aligned memory: invalid alignment\n";
sopts.null_out_result_on_error = true;
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
dopts.alignment = alignment;
imalloc(&sopts, &dopts);
LOG("core.memalign.exit", "result: %p", ret);
return ret;
}
#endif
#ifdef JEMALLOC_OVERRIDE_VALLOC
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc)
je_valloc(size_t size) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.valloc.entry", "size: %zu\n", size);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.bump_empty_alloc = true;
sopts.null_out_result_on_error = true;
sopts.min_alignment = PAGE;
sopts.oom_string =
"<jemalloc>: Error allocating aligned memory: out of memory\n";
sopts.invalid_alignment_string =
"<jemalloc>: Error allocating aligned memory: invalid alignment\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
dopts.alignment = PAGE;
imalloc(&sopts, &dopts);
LOG("core.valloc.exit", "result: %p\n", ret);
return ret;
}
#endif
#if defined(JEMALLOC_IS_MALLOC) && defined(JEMALLOC_GLIBC_MALLOC_HOOK)
/*
* glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
* to inconsistently reference libc's malloc(3)-compatible functions
* (https://bugzilla.mozilla.org/show_bug.cgi?id=493541).
*
* These definitions interpose hooks in glibc. The functions are actually
* passed an extra argument for the caller return address, which will be
* ignored.
*/
JEMALLOC_EXPORT void (*__free_hook)(void *ptr) = je_free;
JEMALLOC_EXPORT void *(*__malloc_hook)(size_t size) = je_malloc;
JEMALLOC_EXPORT void *(*__realloc_hook)(void *ptr, size_t size) = je_realloc;
# ifdef JEMALLOC_GLIBC_MEMALIGN_HOOK
JEMALLOC_EXPORT void *(*__memalign_hook)(size_t alignment, size_t size) =
je_memalign;
# endif
# ifdef CPU_COUNT
/*
* To enable static linking with glibc, the libc specific malloc interface must
* be implemented also, so none of glibc's malloc.o functions are added to the
* link.
*/
# define ALIAS(je_fn) __attribute__((alias (#je_fn), used))
/* To force macro expansion of je_ prefix before stringification. */
# define PREALIAS(je_fn) ALIAS(je_fn)
# ifdef JEMALLOC_OVERRIDE___LIBC_CALLOC
void *__libc_calloc(size_t n, size_t size) PREALIAS(je_calloc);
# endif
# ifdef JEMALLOC_OVERRIDE___LIBC_FREE
void __libc_free(void* ptr) PREALIAS(je_free);
# endif
# ifdef JEMALLOC_OVERRIDE___LIBC_MALLOC
void *__libc_malloc(size_t size) PREALIAS(je_malloc);
# endif
# ifdef JEMALLOC_OVERRIDE___LIBC_MEMALIGN
void *__libc_memalign(size_t align, size_t s) PREALIAS(je_memalign);
# endif
# ifdef JEMALLOC_OVERRIDE___LIBC_REALLOC
void *__libc_realloc(void* ptr, size_t size) PREALIAS(je_realloc);
# endif
# ifdef JEMALLOC_OVERRIDE___LIBC_VALLOC
void *__libc_valloc(size_t size) PREALIAS(je_valloc);
# endif
# ifdef JEMALLOC_OVERRIDE___POSIX_MEMALIGN
int __posix_memalign(void** r, size_t a, size_t s) PREALIAS(je_posix_memalign);
# endif
# undef PREALIAS
# undef ALIAS
# endif
#endif
/*
* End non-standard override functions.
*/
/******************************************************************************/
/*
* Begin non-standard functions.
*/
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1)
je_mallocx(size_t size, int flags) {
void *ret;
static_opts_t sopts;
dynamic_opts_t dopts;
LOG("core.mallocx.entry", "size: %zu, flags: %d", size, flags);
static_opts_init(&sopts);
dynamic_opts_init(&dopts);
sopts.assert_nonempty_alloc = true;
sopts.null_out_result_on_error = true;
sopts.oom_string = "<jemalloc>: Error in mallocx(): out of memory\n";
dopts.result = &ret;
dopts.num_items = 1;
dopts.item_size = size;
if (unlikely(flags != 0)) {
if ((flags & MALLOCX_LG_ALIGN_MASK) != 0) {
dopts.alignment = MALLOCX_ALIGN_GET_SPECIFIED(flags);
}
dopts.zero = MALLOCX_ZERO_GET(flags);
if ((flags & MALLOCX_TCACHE_MASK) != 0) {
if ((flags & MALLOCX_TCACHE_MASK)
== MALLOCX_TCACHE_NONE) {
dopts.tcache_ind = TCACHE_IND_NONE;
} else {
dopts.tcache_ind = MALLOCX_TCACHE_GET(flags);
}
} else {
dopts.tcache_ind = TCACHE_IND_AUTOMATIC;
}
if ((flags & MALLOCX_ARENA_MASK) != 0)
dopts.arena_ind = MALLOCX_ARENA_GET(flags);
}
imalloc(&sopts, &dopts);
LOG("core.mallocx.exit", "result: %p", ret);
return ret;
}
static void *
irallocx_prof_sample(tsdn_t *tsdn, void *old_ptr, size_t old_usize,
size_t usize, size_t alignment, bool zero, tcache_t *tcache, arena_t *arena,
prof_tctx_t *tctx) {
void *p;
if (tctx == NULL) {
return NULL;
}
if (usize <= SMALL_MAXCLASS) {
p = iralloct(tsdn, old_ptr, old_usize, LARGE_MINCLASS,
alignment, zero, tcache, arena);
if (p == NULL) {
return NULL;
}
arena_prof_promote(tsdn, p, usize);
} else {
p = iralloct(tsdn, old_ptr, old_usize, usize, alignment, zero,
tcache, arena);
}
return p;
}
JEMALLOC_ALWAYS_INLINE void *
irallocx_prof(tsd_t *tsd, void *old_ptr, size_t old_usize, size_t size,
size_t alignment, size_t *usize, bool zero, tcache_t *tcache,
arena_t *arena, alloc_ctx_t *alloc_ctx) {
void *p;
bool prof_active;
prof_tctx_t *old_tctx, *tctx;
prof_active = prof_active_get_unlocked();
old_tctx = prof_tctx_get(tsd_tsdn(tsd), old_ptr, alloc_ctx);
tctx = prof_alloc_prep(tsd, *usize, prof_active, false);
if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
p = irallocx_prof_sample(tsd_tsdn(tsd), old_ptr, old_usize,
*usize, alignment, zero, tcache, arena, tctx);
} else {
p = iralloct(tsd_tsdn(tsd), old_ptr, old_usize, size, alignment,
zero, tcache, arena);
}
if (unlikely(p == NULL)) {
prof_alloc_rollback(tsd, tctx, false);
return NULL;
}
if (p == old_ptr && alignment != 0) {
/*
* The allocation did not move, so it is possible that the size
* class is smaller than would guarantee the requested
* alignment, and that the alignment constraint was
* serendipitously satisfied. Additionally, old_usize may not
* be the same as the current usize because of in-place large
* reallocation. Therefore, query the actual value of usize.
*/
*usize = isalloc(tsd_tsdn(tsd), p);
}
prof_realloc(tsd, p, *usize, tctx, prof_active, false, old_ptr,
old_usize, old_tctx);
return p;
}
JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
void JEMALLOC_NOTHROW *
JEMALLOC_ALLOC_SIZE(2)
je_rallocx(void *ptr, size_t size, int flags) {
void *p;
tsd_t *tsd;
size_t usize;
size_t old_usize;
size_t alignment = MALLOCX_ALIGN_GET(flags);
bool zero = flags & MALLOCX_ZERO;
arena_t *arena;
tcache_t *tcache;
LOG("core.rallocx.entry", "ptr: %p, size: %zu, flags: %d", ptr,
size, flags);
assert(ptr != NULL);
assert(size != 0);
assert(malloc_initialized() || IS_INITIALIZER);
tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
if (unlikely((flags & MALLOCX_ARENA_MASK) != 0)) {
unsigned arena_ind = MALLOCX_ARENA_GET(flags);
arena = arena_get(tsd_tsdn(tsd), arena_ind, true);
if (unlikely(arena == NULL)) {
goto label_oom;
}
} else {
arena = NULL;
}
if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) {
if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) {
tcache = NULL;
} else {
tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
}
} else {
tcache = tcache_get(tsd);
}
alloc_ctx_t alloc_ctx;
rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd);
rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx,
(uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab);
assert(alloc_ctx.szind != NSIZES);
old_usize = sz_index2size(alloc_ctx.szind);
assert(old_usize == isalloc(tsd_tsdn(tsd), ptr));
if (config_prof && opt_prof) {
usize = (alignment == 0) ?
sz_s2u(size) : sz_sa2u(size, alignment);
if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
goto label_oom;
}
p = irallocx_prof(tsd, ptr, old_usize, size, alignment, &usize,
zero, tcache, arena, &alloc_ctx);
if (unlikely(p == NULL)) {
goto label_oom;
}
} else {
p = iralloct(tsd_tsdn(tsd), ptr, old_usize, size, alignment,
zero, tcache, arena);
if (unlikely(p == NULL)) {
goto label_oom;
}
if (config_stats) {
usize = isalloc(tsd_tsdn(tsd), p);
}
}
assert(alignment == 0 || ((uintptr_t)p & (alignment - 1)) == ZU(0));
if (config_stats) {
*tsd_thread_allocatedp_get(tsd) += usize;
*tsd_thread_deallocatedp_get(tsd) += old_usize;
}
UTRACE(ptr, size, p);
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.rallocx.exit", "result: %p", p);
return p;
label_oom:
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write("<jemalloc>: Error in rallocx(): out of memory\n");
abort();
}
UTRACE(ptr, size, 0);
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.rallocx.exit", "result: %p", NULL);
return NULL;
}
JEMALLOC_ALWAYS_INLINE size_t
ixallocx_helper(tsdn_t *tsdn, void *ptr, size_t old_usize, size_t size,
size_t extra, size_t alignment, bool zero) {
size_t usize;
if (ixalloc(tsdn, ptr, old_usize, size, extra, alignment, zero)) {
return old_usize;
}
usize = isalloc(tsdn, ptr);
return usize;
}
static size_t
ixallocx_prof_sample(tsdn_t *tsdn, void *ptr, size_t old_usize, size_t size,
size_t extra, size_t alignment, bool zero, prof_tctx_t *tctx) {
size_t usize;
if (tctx == NULL) {
return old_usize;
}
usize = ixallocx_helper(tsdn, ptr, old_usize, size, extra, alignment,
zero);
return usize;
}
JEMALLOC_ALWAYS_INLINE size_t
ixallocx_prof(tsd_t *tsd, void *ptr, size_t old_usize, size_t size,
size_t extra, size_t alignment, bool zero, alloc_ctx_t *alloc_ctx) {
size_t usize_max, usize;
bool prof_active;
prof_tctx_t *old_tctx, *tctx;
prof_active = prof_active_get_unlocked();
old_tctx = prof_tctx_get(tsd_tsdn(tsd), ptr, alloc_ctx);
/*
* usize isn't knowable before ixalloc() returns when extra is non-zero.
* Therefore, compute its maximum possible value and use that in
* prof_alloc_prep() to decide whether to capture a backtrace.
* prof_realloc() will use the actual usize to decide whether to sample.
*/
if (alignment == 0) {
usize_max = sz_s2u(size+extra);
assert(usize_max > 0 && usize_max <= LARGE_MAXCLASS);
} else {
usize_max = sz_sa2u(size+extra, alignment);
if (unlikely(usize_max == 0 || usize_max > LARGE_MAXCLASS)) {
/*
* usize_max is out of range, and chances are that
* allocation will fail, but use the maximum possible
* value and carry on with prof_alloc_prep(), just in
* case allocation succeeds.
*/
usize_max = LARGE_MAXCLASS;
}
}
tctx = prof_alloc_prep(tsd, usize_max, prof_active, false);
if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
usize = ixallocx_prof_sample(tsd_tsdn(tsd), ptr, old_usize,
size, extra, alignment, zero, tctx);
} else {
usize = ixallocx_helper(tsd_tsdn(tsd), ptr, old_usize, size,
extra, alignment, zero);
}
if (usize == old_usize) {
prof_alloc_rollback(tsd, tctx, false);
return usize;
}
prof_realloc(tsd, ptr, usize, tctx, prof_active, false, ptr, old_usize,
old_tctx);
return usize;
}
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
je_xallocx(void *ptr, size_t size, size_t extra, int flags) {
tsd_t *tsd;
size_t usize, old_usize;
size_t alignment = MALLOCX_ALIGN_GET(flags);
bool zero = flags & MALLOCX_ZERO;
LOG("core.xallocx.entry", "ptr: %p, size: %zu, extra: %zu, "
"flags: %d", ptr, size, extra, flags);
assert(ptr != NULL);
assert(size != 0);
assert(SIZE_T_MAX - size >= extra);
assert(malloc_initialized() || IS_INITIALIZER);
tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
alloc_ctx_t alloc_ctx;
rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd);
rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx,
(uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab);
assert(alloc_ctx.szind != NSIZES);
old_usize = sz_index2size(alloc_ctx.szind);
assert(old_usize == isalloc(tsd_tsdn(tsd), ptr));
/*
* The API explicitly absolves itself of protecting against (size +
* extra) numerical overflow, but we may need to clamp extra to avoid
* exceeding LARGE_MAXCLASS.
*
* Ordinarily, size limit checking is handled deeper down, but here we
* have to check as part of (size + extra) clamping, since we need the
* clamped value in the above helper functions.
*/
if (unlikely(size > LARGE_MAXCLASS)) {
usize = old_usize;
goto label_not_resized;
}
if (unlikely(LARGE_MAXCLASS - size < extra)) {
extra = LARGE_MAXCLASS - size;
}
if (config_prof && opt_prof) {
usize = ixallocx_prof(tsd, ptr, old_usize, size, extra,
alignment, zero, &alloc_ctx);
} else {
usize = ixallocx_helper(tsd_tsdn(tsd), ptr, old_usize, size,
extra, alignment, zero);
}
if (unlikely(usize == old_usize)) {
goto label_not_resized;
}
if (config_stats) {
*tsd_thread_allocatedp_get(tsd) += usize;
*tsd_thread_deallocatedp_get(tsd) += old_usize;
}
label_not_resized:
UTRACE(ptr, size, ptr);
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.xallocx.exit", "result: %zu", usize);
return usize;
}
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
JEMALLOC_ATTR(pure)
je_sallocx(const void *ptr, int flags) {
size_t usize;
tsdn_t *tsdn;
LOG("core.sallocx.entry", "ptr: %p, flags: %d", ptr, flags);
assert(malloc_initialized() || IS_INITIALIZER);
assert(ptr != NULL);
tsdn = tsdn_fetch();
check_entry_exit_locking(tsdn);
if (config_debug || force_ivsalloc) {
usize = ivsalloc(tsdn, ptr);
assert(force_ivsalloc || usize != 0);
} else {
usize = isalloc(tsdn, ptr);
}
check_entry_exit_locking(tsdn);
LOG("core.sallocx.exit", "result: %zu", usize);
return usize;
}
JEMALLOC_EXPORT void JEMALLOC_NOTHROW
je_dallocx(void *ptr, int flags) {
LOG("core.dallocx.entry", "ptr: %p, flags: %d", ptr, flags);
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
tsd_t *tsd = tsd_fetch();
bool fast = tsd_fast(tsd);
check_entry_exit_locking(tsd_tsdn(tsd));
tcache_t *tcache;
if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) {
/* Not allowed to be reentrant and specify a custom tcache. */
assert(tsd_reentrancy_level_get(tsd) == 0);
if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) {
tcache = NULL;
} else {
tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
}
} else {
if (likely(fast)) {
tcache = tsd_tcachep_get(tsd);
assert(tcache == tcache_get(tsd));
} else {
if (likely(tsd_reentrancy_level_get(tsd) == 0)) {
tcache = tcache_get(tsd);
} else {
tcache = NULL;
}
}
}
UTRACE(ptr, 0, 0);
if (likely(fast)) {
tsd_assert_fast(tsd);
ifree(tsd, ptr, tcache, false);
} else {
ifree(tsd, ptr, tcache, true);
}
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.dallocx.exit", "");
}
JEMALLOC_ALWAYS_INLINE size_t
inallocx(tsdn_t *tsdn, size_t size, int flags) {
check_entry_exit_locking(tsdn);
size_t usize;
if (likely((flags & MALLOCX_LG_ALIGN_MASK) == 0)) {
usize = sz_s2u(size);
} else {
usize = sz_sa2u(size, MALLOCX_ALIGN_GET_SPECIFIED(flags));
}
check_entry_exit_locking(tsdn);
return usize;
}
JEMALLOC_EXPORT void JEMALLOC_NOTHROW
je_sdallocx(void *ptr, size_t size, int flags) {
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
LOG("core.sdallocx.entry", "ptr: %p, size: %zu, flags: %d", ptr,
size, flags);
tsd_t *tsd = tsd_fetch();
bool fast = tsd_fast(tsd);
size_t usize = inallocx(tsd_tsdn(tsd), size, flags);
assert(usize == isalloc(tsd_tsdn(tsd), ptr));
check_entry_exit_locking(tsd_tsdn(tsd));
tcache_t *tcache;
if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) {
/* Not allowed to be reentrant and specify a custom tcache. */
assert(tsd_reentrancy_level_get(tsd) == 0);
if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) {
tcache = NULL;
} else {
tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
}
} else {
if (likely(fast)) {
tcache = tsd_tcachep_get(tsd);
assert(tcache == tcache_get(tsd));
} else {
if (likely(tsd_reentrancy_level_get(tsd) == 0)) {
tcache = tcache_get(tsd);
} else {
tcache = NULL;
}
}
}
UTRACE(ptr, 0, 0);
if (likely(fast)) {
tsd_assert_fast(tsd);
isfree(tsd, ptr, usize, tcache, false);
} else {
isfree(tsd, ptr, usize, tcache, true);
}
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.sdallocx.exit", "");
}
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
JEMALLOC_ATTR(pure)
je_nallocx(size_t size, int flags) {
size_t usize;
tsdn_t *tsdn;
assert(size != 0);
if (unlikely(malloc_init())) {
LOG("core.nallocx.exit", "result: %zu", ZU(0));
return 0;
}
tsdn = tsdn_fetch();
check_entry_exit_locking(tsdn);
usize = inallocx(tsdn, size, flags);
if (unlikely(usize > LARGE_MAXCLASS)) {
LOG("core.nallocx.exit", "result: %zu", ZU(0));
return 0;
}
check_entry_exit_locking(tsdn);
LOG("core.nallocx.exit", "result: %zu", usize);
return usize;
}
JEMALLOC_EXPORT int JEMALLOC_NOTHROW
je_mallctl(const char *name, void *oldp, size_t *oldlenp, void *newp,
size_t newlen) {
int ret;
tsd_t *tsd;
LOG("core.mallctl.entry", "name: %s", name);
if (unlikely(malloc_init())) {
LOG("core.mallctl.exit", "result: %d", EAGAIN);
return EAGAIN;
}
tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
ret = ctl_byname(tsd, name, oldp, oldlenp, newp, newlen);
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.mallctl.exit", "result: %d", ret);
return ret;
}
JEMALLOC_EXPORT int JEMALLOC_NOTHROW
je_mallctlnametomib(const char *name, size_t *mibp, size_t *miblenp) {
int ret;
LOG("core.mallctlnametomib.entry", "name: %s", name);
if (unlikely(malloc_init())) {
LOG("core.mallctlnametomib.exit", "result: %d", EAGAIN);
return EAGAIN;
}
tsd_t *tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
ret = ctl_nametomib(tsd, name, mibp, miblenp);
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.mallctlnametomib.exit", "result: %d", ret);
return ret;
}
JEMALLOC_EXPORT int JEMALLOC_NOTHROW
je_mallctlbymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp,
void *newp, size_t newlen) {
int ret;
tsd_t *tsd;
LOG("core.mallctlbymib.entry", "");
if (unlikely(malloc_init())) {
LOG("core.mallctlbymib.exit", "result: %d", EAGAIN);
return EAGAIN;
}
tsd = tsd_fetch();
check_entry_exit_locking(tsd_tsdn(tsd));
ret = ctl_bymib(tsd, mib, miblen, oldp, oldlenp, newp, newlen);
check_entry_exit_locking(tsd_tsdn(tsd));
LOG("core.mallctlbymib.exit", "result: %d", ret);
return ret;
}
JEMALLOC_EXPORT void JEMALLOC_NOTHROW
je_malloc_stats_print(void (*write_cb)(void *, const char *), void *cbopaque,
const char *opts) {
tsdn_t *tsdn;
LOG("core.malloc_stats_print.entry", "");
tsdn = tsdn_fetch();
check_entry_exit_locking(tsdn);
stats_print(write_cb, cbopaque, opts);
check_entry_exit_locking(tsdn);
LOG("core.malloc_stats_print.exit", "");
}
JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr) {
size_t ret;
tsdn_t *tsdn;
LOG("core.malloc_usable_size.entry", "ptr: %p", ptr);
assert(malloc_initialized() || IS_INITIALIZER);
tsdn = tsdn_fetch();
check_entry_exit_locking(tsdn);
if (unlikely(ptr == NULL)) {
ret = 0;
} else {
if (config_debug || force_ivsalloc) {
ret = ivsalloc(tsdn, ptr);
assert(force_ivsalloc || ret != 0);
} else {
ret = isalloc(tsdn, ptr);
}
}
check_entry_exit_locking(tsdn);
LOG("core.malloc_usable_size.exit", "result: %zu", ret);
return ret;
}
/*
* End non-standard functions.
*/
/******************************************************************************/
/*
* The following functions are used by threading libraries for protection of
* malloc during fork().
*/
/*
* If an application creates a thread before doing any allocation in the main
* thread, then calls fork(2) in the main thread followed by memory allocation
* in the child process, a race can occur that results in deadlock within the
* child: the main thread may have forked while the created thread had
* partially initialized the allocator. Ordinarily jemalloc prevents
* fork/malloc races via the following functions it registers during
* initialization using pthread_atfork(), but of course that does no good if
* the allocator isn't fully initialized at fork time. The following library
* constructor is a partial solution to this problem. It may still be possible
* to trigger the deadlock described above, but doing so would involve forking
* via a library constructor that runs before jemalloc's runs.
*/
#ifndef JEMALLOC_JET
JEMALLOC_ATTR(constructor)
static void
jemalloc_constructor(void) {
malloc_init();
}
#endif
#ifndef JEMALLOC_MUTEX_INIT_CB
void
jemalloc_prefork(void)
#else
JEMALLOC_EXPORT void
_malloc_prefork(void)
#endif
{
tsd_t *tsd;
unsigned i, j, narenas;
arena_t *arena;
#ifdef JEMALLOC_MUTEX_INIT_CB
if (!malloc_initialized()) {
return;
}
#endif
assert(malloc_initialized());
tsd = tsd_fetch();
narenas = narenas_total_get();
witness_prefork(tsd_witness_tsdp_get(tsd));
/* Acquire all mutexes in a safe order. */
ctl_prefork(tsd_tsdn(tsd));
tcache_prefork(tsd_tsdn(tsd));
malloc_mutex_prefork(tsd_tsdn(tsd), &arenas_lock);
if (have_background_thread) {
background_thread_prefork0(tsd_tsdn(tsd));
}
prof_prefork0(tsd_tsdn(tsd));
if (have_background_thread) {
background_thread_prefork1(tsd_tsdn(tsd));
}
/* Break arena prefork into stages to preserve lock order. */
for (i = 0; i < 8; i++) {
for (j = 0; j < narenas; j++) {
if ((arena = arena_get(tsd_tsdn(tsd), j, false)) !=
NULL) {
switch (i) {
case 0:
arena_prefork0(tsd_tsdn(tsd), arena);
break;
case 1:
arena_prefork1(tsd_tsdn(tsd), arena);
break;
case 2:
arena_prefork2(tsd_tsdn(tsd), arena);
break;
case 3:
arena_prefork3(tsd_tsdn(tsd), arena);
break;
case 4:
arena_prefork4(tsd_tsdn(tsd), arena);
break;
case 5:
arena_prefork5(tsd_tsdn(tsd), arena);
break;
case 6:
arena_prefork6(tsd_tsdn(tsd), arena);
break;
case 7:
arena_prefork7(tsd_tsdn(tsd), arena);
break;
default: not_reached();
}
}
}
}
prof_prefork1(tsd_tsdn(tsd));
}
#ifndef JEMALLOC_MUTEX_INIT_CB
void
jemalloc_postfork_parent(void)
#else
JEMALLOC_EXPORT void
_malloc_postfork(void)
#endif
{
tsd_t *tsd;
unsigned i, narenas;
#ifdef JEMALLOC_MUTEX_INIT_CB
if (!malloc_initialized()) {
return;
}
#endif
assert(malloc_initialized());
tsd = tsd_fetch();
witness_postfork_parent(tsd_witness_tsdp_get(tsd));
/* Release all mutexes, now that fork() has completed. */
for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
arena_t *arena;
if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) {
arena_postfork_parent(tsd_tsdn(tsd), arena);
}
}
prof_postfork_parent(tsd_tsdn(tsd));
if (have_background_thread) {
background_thread_postfork_parent(tsd_tsdn(tsd));
}
malloc_mutex_postfork_parent(tsd_tsdn(tsd), &arenas_lock);
tcache_postfork_parent(tsd_tsdn(tsd));
ctl_postfork_parent(tsd_tsdn(tsd));
}
void
jemalloc_postfork_child(void) {
tsd_t *tsd;
unsigned i, narenas;
assert(malloc_initialized());
tsd = tsd_fetch();
witness_postfork_child(tsd_witness_tsdp_get(tsd));
/* Release all mutexes, now that fork() has completed. */
for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
arena_t *arena;
if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) {
arena_postfork_child(tsd_tsdn(tsd), arena);
}
}
prof_postfork_child(tsd_tsdn(tsd));
if (have_background_thread) {
background_thread_postfork_child(tsd_tsdn(tsd));
}
malloc_mutex_postfork_child(tsd_tsdn(tsd), &arenas_lock);
tcache_postfork_child(tsd_tsdn(tsd));
ctl_postfork_child(tsd_tsdn(tsd));
}
/******************************************************************************/