Add any() and remove_any() to ph.

These functions select the easiest-to-remove element in the heap, which
is either the most recently inserted aux list element or the root.  If
no calls are made to first() or remove_first(), the behavior (and time
complexity) is the same as for a LIFO queue.
This commit is contained in:
Jason Evans 2017-03-03 22:51:21 -08:00
parent e201e24904
commit cc75c35db5
2 changed files with 84 additions and 5 deletions

View File

@ -198,8 +198,10 @@ struct { \
a_attr void a_prefix##new(a_ph_type *ph); \
a_attr bool a_prefix##empty(a_ph_type *ph); \
a_attr a_type *a_prefix##first(a_ph_type *ph); \
a_attr a_type *a_prefix##any(a_ph_type *ph); \
a_attr void a_prefix##insert(a_ph_type *ph, a_type *phn); \
a_attr a_type *a_prefix##remove_first(a_ph_type *ph); \
a_attr a_type *a_prefix##remove_any(a_ph_type *ph); \
a_attr void a_prefix##remove(a_ph_type *ph, a_type *phn);
/*
@ -223,6 +225,17 @@ a_prefix##first(a_ph_type *ph) { \
ph_merge_aux(a_type, a_field, ph, a_cmp); \
return ph->ph_root; \
} \
a_attr a_type * \
a_prefix##any(a_ph_type *ph) { \
if (ph->ph_root == NULL) { \
return NULL; \
} \
a_type *aux = phn_next_get(a_type, a_field, ph->ph_root); \
if (aux != NULL) { \
return aux; \
} \
return ph->ph_root; \
} \
a_attr void \
a_prefix##insert(a_ph_type *ph, a_type *phn) { \
memset(&phn->a_field, 0, sizeof(phn(a_type))); \
@ -266,15 +279,52 @@ a_prefix##remove_first(a_ph_type *ph) { \
\
return ret; \
} \
a_attr a_type * \
a_prefix##remove_any(a_ph_type *ph) { \
/* \
* Remove the most recently inserted aux list element, or the \
* root if the aux list is empty. This has the effect of \
* behaving as a LIFO (and insertion/removal is therefore \
* constant-time) if a_prefix##[remove_]first() are never \
* called. \
*/ \
if (ph->ph_root == NULL) { \
return NULL; \
} \
a_type *ret = phn_next_get(a_type, a_field, ph->ph_root); \
if (ret != NULL) { \
a_type *aux = phn_next_get(a_type, a_field, ret); \
phn_next_set(a_type, a_field, ph->ph_root, aux); \
if (aux != NULL) { \
phn_prev_set(a_type, a_field, aux, \
ph->ph_root); \
} \
return ret; \
} \
ret = ph->ph_root; \
ph_merge_children(a_type, a_field, ph->ph_root, a_cmp, \
ph->ph_root); \
return ret; \
} \
a_attr void \
a_prefix##remove(a_ph_type *ph, a_type *phn) { \
a_type *replace, *parent; \
\
/* \
* We can delete from aux list without merging it, but we need \
* to merge if we are dealing with the root node. \
*/ \
if (ph->ph_root == phn) { \
/* \
* We can delete from aux list without merging it, but \
* we need to merge if we are dealing with the root \
* node and it has children. \
*/ \
if (phn_lchild_get(a_type, a_field, phn) == NULL) { \
ph->ph_root = phn_next_get(a_type, a_field, \
phn); \
if (ph->ph_root != NULL) { \
phn_prev_set(a_type, a_field, \
ph->ph_root, NULL); \
} \
return; \
} \
ph_merge_aux(a_type, a_field, ph, a_cmp); \
if (ph->ph_root == phn) { \
ph_merge_children(a_type, a_field, ph->ph_root, \

View File

@ -142,6 +142,7 @@ TEST_BEGIN(test_ph_empty) {
heap_new(&heap);
assert_true(heap_empty(&heap), "Heap should be empty");
assert_ptr_null(heap_first(&heap), "Unexpected node");
assert_ptr_null(heap_any(&heap), "Unexpected node");
}
TEST_END
@ -159,6 +160,13 @@ node_remove_first(heap_t *heap) {
return node;
}
static node_t *
node_remove_any(heap_t *heap) {
node_t *node = heap_remove_any(heap);
node->magic = 0;
return node;
}
TEST_BEGIN(test_ph_random) {
#define NNODES 25
#define NBAGS 250
@ -204,6 +212,8 @@ TEST_BEGIN(test_ph_random) {
for (k = 0; k < j; k++) {
heap_insert(&heap, &nodes[k]);
if (i % 13 == 12) {
assert_ptr_not_null(heap_any(&heap),
"Heap should not be empty");
/* Trigger merging. */
assert_ptr_not_null(heap_first(&heap),
"Heap should not be empty");
@ -216,7 +226,7 @@ TEST_BEGIN(test_ph_random) {
"Heap should not be empty");
/* Remove nodes. */
switch (i % 4) {
switch (i % 6) {
case 0:
for (k = 0; k < j; k++) {
assert_u_eq(heap_validate(&heap), j - k,
@ -264,12 +274,31 @@ TEST_BEGIN(test_ph_random) {
prev = node;
}
break;
} case 4: {
for (k = 0; k < j; k++) {
node_remove_any(&heap);
assert_u_eq(heap_validate(&heap), j - k
- 1, "Incorrect node count");
}
break;
} case 5: {
for (k = 0; k < j; k++) {
node_t *node = heap_any(&heap);
assert_u_eq(heap_validate(&heap), j - k,
"Incorrect node count");
node_remove(&heap, node);
assert_u_eq(heap_validate(&heap), j - k
- 1, "Incorrect node count");
}
break;
} default:
not_reached();
}
assert_ptr_null(heap_first(&heap),
"Heap should be empty");
assert_ptr_null(heap_any(&heap),
"Heap should be empty");
assert_true(heap_empty(&heap), "Heap should be empty");
}
}