This avoids grabbing the base mutex, as a step towards fine-grained
locking for huge allocations. The thread cache also provides a tiny
(~3%) improvement for serial huge allocations.
Abstract arenas access to use arena_get() (or a0get() where appropriate)
rather than directly reading e.g. arenas[ind]. Prior to the addition of
the arenas.extend mallctl, the worst possible outcome of directly
accessing arenas was a stale read, but arenas.extend may allocate and
assign a new array to arenas.
Add a tsd-based arenas_cache, which amortizes arenas reads. This
introduces some subtle bootstrapping issues, with tsd_boot() now being
split into tsd_boot[01]() to support tsd wrapper allocation
bootstrapping, as well as an arenas_cache_bypass tsd variable which
dynamically terminates allocation of arenas_cache itself.
Promote a0malloc(), a0calloc(), and a0free() to be generally useful for
internal allocation, and use them in several places (more may be
appropriate).
Abstract arena->nthreads management and fix a missing decrement during
thread destruction (recent tsd refactoring left arenas_cleanup()
unused).
Change arena_choose() to propagate OOM, and handle OOM in all callers.
This is important for providing consistent allocation behavior when the
MALLOCX_ARENA() flag is being used. Prior to this fix, it was possible
for an OOM to result in allocation silently allocating from a different
arena than the one specified.
Normalize size classes to use the same number of size classes per size
doubling (currently hard coded to 4), across the intire range of size
classes. Small size classes already used this spacing, but in order to
support this change, additional small size classes now fill [4 KiB .. 16
KiB). Large size classes range from [16 KiB .. 4 MiB). Huge size
classes now support non-multiples of the chunk size in order to fill (4
MiB .. 16 MiB).
According to the docbook documentation for <funcprototype>, its parent
must be <funcsynopsis>; fix accordingly. Nonetheless, the man page
processor fails badly when this construct is embedded in a <para> (which
is documented to be legal), although the html processor does fine.
This adds support for expanding huge allocations in-place by requesting
memory at a specific address from the chunk allocator.
It's currently only implemented for the chunk recycling path, although
in theory it could also be done by optimistically allocating new chunks.
On Linux, it could attempt an in-place mremap. However, that won't work
in practice since the heap is grown downwards and memory is not unmapped
(in a normal build, at least).
Repeated vector reallocation micro-benchmark:
#include <string.h>
#include <stdlib.h>
int main(void) {
for (size_t i = 0; i < 100; i++) {
void *ptr = NULL;
size_t old_size = 0;
for (size_t size = 4; size < (1 << 30); size *= 2) {
ptr = realloc(ptr, size);
if (!ptr) return 1;
memset(ptr + old_size, 0xff, size - old_size);
old_size = size;
}
free(ptr);
}
}
The glibc allocator fails to do any in-place reallocations on this
benchmark once it passes the M_MMAP_THRESHOLD (default 128k) but it
elides the cost of copies via mremap, which is currently not something
that jemalloc can use.
With this improvement, jemalloc still fails to do any in-place huge
reallocations for the first outer loop, but then succeeds 100% of the
time for the remaining 99 iterations. The time spent doing allocations
and copies drops down to under 5%, with nearly all of it spent doing
purging + faulting (when huge pages are disabled) and the array memset.
An improved mremap API (MREMAP_RETAIN - #138) would be far more general
but this is a portable optimization and would still be useful on Linux
for xallocx.
Numbers with transparent huge pages enabled:
glibc (copies elided via MREMAP_MAYMOVE): 8.471s
jemalloc: 17.816s
jemalloc + no-op madvise: 13.236s
jemalloc + this commit: 6.787s
jemalloc + this commit + no-op madvise: 6.144s
Numbers with transparent huge pages disabled:
glibc (copies elided via MREMAP_MAYMOVE): 15.403s
jemalloc: 39.456s
jemalloc + no-op madvise: 12.768s
jemalloc + this commit: 15.534s
jemalloc + this commit + no-op madvise: 6.354s
Closes#137
Fix an OOM-related regression in arena_tcache_fill_small() that caused
cache corruption that would almost certainly expose the application to
undefined behavior, usually in the form of an allocation request
returning an already-allocated region, or somewhat less likely, a freed
region that had already been returned to the arena, thus making it
available to the arena for any purpose.
This regression was introduced by
9c43c13a35 (Reverse tcache fill order.),
and was present in all releases from 2.2.0 through 3.6.0.
This resolves#98.
Fix prof regressions related to tdata (main per thread profiling data
structure) destruction:
- Deadlock. The fix for this was intended to be part of
20c31deaae (Test prof.reset mallctl and
fix numerous discovered bugs.) but the fix was left incomplete.
- Destruction race. Detaching tdata just prior to destruction without
holding the tdatas lock made it possible for another thread to destroy
the tdata out from under the thread that was on its way to doing so.
Don't disable tcache when lazy-lock is configured. There already exists
a mechanism to disable tcache, but doing so automatically due to
lazy-lock causes surprising performance behavior.
Revert 6716aa8352 (Force use of TLS if
heap profiling is enabled.). No existing tests indicate that this is
necessary, nor does code inspection uncover any potential issues. Most
likely the original commit covered up a bug related to tsd-internal
allocation that has since been fixed.
Fix tsd cleanup regressions that were introduced in
5460aa6f66 (Convert all tsd variables to
reside in a single tsd structure.). These regressions were twofold:
1) tsd_tryget() should never (and need never) return NULL. Rename it to
tsd_fetch() and simplify all callers.
2) tsd_*_set() must only be called when tsd is in the nominal state,
because cleanup happens during the nominal-->purgatory transition,
and re-initialization must not happen while in the purgatory state.
Add tsd_nominal() and use it as needed. Note that tsd_*{p,}_get()
can still be used as long as no re-initialization that would require
cleanup occurs. This means that e.g. the thread_allocated counter
can be updated unconditionally.
Implement/test/fix the opt.prof_thread_active_init,
prof.thread_active_init, and thread.prof.active mallctl's.
Test/fix the thread.prof.name mallctl.
Refactor opt_prof_active to be read-only and move mutable state into the
prof_active variable. Stop leaning on ctl-related locking for
protection.
Refactor permuted backtrace test allocation that was originally used
only by the prof_accum test, so that it can be used by other heap
profiling test binaries.
Move small run metadata into the arena chunk header, with multiple
expected benefits:
- Lower run fragmentation due to reduced run sizes; runs are more likely
to completely drain when there are fewer total regions.
- Improved cache behavior. Prior to this change, run headers were
always page-aligned, which put extra pressure on some CPU cache sets.
The degree to which this was a problem was hardware dependent, but it
likely hurt some even for the most advanced modern hardware.
- Buffer overruns/underruns are less likely to corrupt allocator
metadata.
- Size classes between 4 KiB and 16 KiB become reasonable to support
without any special handling, and the runs are small enough that dirty
unused pages aren't a significant concern.
Fix a race that caused a non-critical assertion failure. To trigger the
race, a thread had to be part way through initializing a new sample,
such that it was discoverable by the dumping thread, but not yet linked
into its gctx by the time a later dump phase would normally have reset
its state to 'nominal'.
Additionally, lock access to the state field during modification to
transition to the dumping state. It's not apparent that this oversight
could have caused an actual problem due to outer locking that protects
the dumping machinery, but the added locking pedantically follows the
stated locking protocol for the state field.
It has an unused variable, so it was always failing (at least with gcc
4.9.1). Alternatively, the `-Werror` flag could be removed if it isn't
strictly necessary.
Don't use atomic_add_uint64(), because it isn't available on 32-bit
platforms.
Fix forking support functions to manage all prof-related mutexes.
These regressions were introduced by
602c8e0971 (Implement per thread heap
profiling.), which did not make it into any releases prior to these
fixes.
Fix irallocx_prof() sample logic to only update the threshold counter
after it knows what size the allocation ended up being. This regression
was caused by 6e73dc194e (Fix a profile
sampling race.), which did not make it into any releases prior to this
fix.
* assertion failure
* malloc_init failure
* malloc not already initialized (in malloc_init)
* running in valgrind
* thread cache disabled at runtime
Clang and GCC already consider a comparison with NULL or -1 to be cold,
so many branches (out-of-memory) are already correctly considered as
cold and marking them is not important.
Fix a profile sampling race that was due to preparing to sample, yet
doing nothing to assure that the context remains valid until the stats
are updated.
These regressions were caused by
602c8e0971 (Implement per thread heap
profiling.), which did not make it into any releases prior to these
fixes.
Fix prof_tdata_get() to avoid dereferencing an invalid tdata pointer
(when it's PROF_TDATA_STATE_{REINCARNATED,PURGATORY}).
Fix prof_tdata_get() callers to check for invalid results besides NULL
(PROF_TDATA_STATE_{REINCARNATED,PURGATORY}).
These regressions were caused by
602c8e0971 (Implement per thread heap
profiling.), which did not make it into any releases prior to these
fixes.