Forking a multithreaded process is dangerous but allowed, so long as the child
only executes async-signal-safe functions (e.g. exec). Add a test to ensure
that we don't break this behavior.
Add testing for background_thread:true, and condition a xallocx() -->
rallocx() escalation assertion to allow for spurious in-place rallocx()
following xallocx() failure.
Added opt.background_thread to enable background threads, which handles purging
currently. When enabled, decay ticks will not trigger purging (which will be
left to the background threads). We limit the max number of threads to NCPUs.
When percpu arena is enabled, set CPU affinity for the background threads as
well.
The sleep interval of background threads is dynamic and determined by computing
number of pages to purge in the future (based on backlog).
Instead of embedding a lock bit in rtree leaf elements, we associate extents
with a small set of mutexes. This gets us two things:
- We can use the system mutexes. This (hypothetically) protects us from
priority inversion, and lets us stop doing a backoff/sleep loop, instead
opting for precise wakeups from the mutex.
- Cuts down on the number of mutex acquisitions we have to do (from 4 in the
worst case to two).
We end up simplifying most of the rtree code (which no longer has to deal with
locking or concurrency at all), at the cost of additional complexity in the
extent code: since the mutex protecting the rtree leaf elements is determined by
reading the extent out of those elements, the initial read is racy, so that we
may acquire an out of date mutex. We re-check the extent in the leaf after
acquiring the mutex to protect us from this race.
Support millisecond resolution for decay times. Among other use cases
this makes it possible to specify a short initial dirty-->muzzy decay
phase, followed by a longer muzzy-->clean decay phase.
This resolves#812.
This removes the tsd macros (which are used only for tsd_t in real builds). We
break up the circular dependencies involving tsd.
We also move all tsd access through getters and setters. This allows us to
assert that we only touch data when tsd is in a valid state.
We simplify the usages of the x macro trick, removing all the customizability
(get/set, init, cleanup), moving the lifetime logic to tsd_init and tsd_cleanup.
This lets us make initialization order independent of order within tsd_t.
Add the extent_destroy_t extent destruction hook to extent_hooks_t, and
use it during arena destruction. This hook explicitly communicates to
the callee that the extent must be destroyed or tracked for later reuse,
lest it be permanently leaked. Prior to this change, retained extents
could unintentionally be leaked if extent retention was enabled.
This resolves#560.
Control use of munmap(2) via a run-time option rather than a
compile-time option (with the same per platform default). The old
behavior of --disable-munmap can be achieved with
--with-malloc-conf=munmap:false.
This partially resolves#580.
Simplify configuration by removing the --disable-tcache option, but
replace the testing for that configuration with
--with-malloc-conf=tcache:false.
Fix the thread.arena and thread.tcache.flush mallctls to work correctly
if tcache is disabled.
This partially resolves#580.
All mappings continue to be PAGE-aligned, even if the system page size
is smaller. This change is primarily intended to provide a mechanism
for supporting multiple page sizes with the same binary; smaller page
sizes work better in conjunction with jemalloc's design.
This resolves#467.
Some systems use a native 64 KiB page size, which means that the bitmap
for the smallest size class can be 8192 bits, not just 512 bits as when
the page size is 4 KiB. Linear search in bitmap_{sfu,ffu}() is
unacceptably slow for such large bitmaps.
This reverts commit 7c00f04ff4.
With this change, when profiling is enabled, we avoid doing redundant rtree
lookups. Also changed dalloc_atx_t to alloc_atx_t, as it's now used on
allocation path as well (to speed up profiling).
This checks whether or not we're reentrant using thread-local data, and, if we
are, moves certain internal allocations to use arena 0 (which should be properly
initialized after bootstrapping).
The immediate thing this allows is spinning up threads in arena_new, which will
enable spinning up background threads there.
The embedded tcache is initialized upon tsd initialization. The avail arrays
for the tbins will be allocated / deallocated accordingly during init / cleanup.
With this change, the pointer to the auto tcache will always be available, as
long as we have access to the TSD. tcache_available() (called in tcache_get())
is provided to check if we should use tcache.
This will facilitate embedding tcache into tsd, which will require proper
initialization cannot be done via the static initializer. Make tsd->rtree_ctx
to be initialized via rtree_ctx_data_init().
Remove tree-structured bitmap support, in order to reduce complexity and
ease maintenance. No bitmaps larger than 512 bits have been necessary
since before 4.0.0, and there is no current plan that would increase
maximum bitmap size. Although tree-structured bitmaps were used on
32-bit platforms prior to this change, the overall benefits were
questionable (higher metadata overhead, higher bitmap modification cost,
marginally lower search cost).
This fixes an extent searching regression on 32-bit systems, caused by
the initial bitmap_ffu() implementation in
c8021d01f6 (Implement bitmap_ffu(), which
finds the first unset bit.), as first used in
5d33233a5e (Use a bitmap in extents_t to
speed up search.).