As the code evolves, some code paths that have previously assigned
deferred_work_generated may cease being reached. This would leave the value
uninitialized. This change initializes the value for safety.
Adding guarded extents, which are regular extents surrounded by guard pages
(mprotected). To reduce syscalls, small guarded extents are cached as a
separate eset in ecache, and decay through the dirty / muzzy / retained pipeline
as usual.
This mallctl accepts an arena_config_t structure which
can be used to customize the behavior of the arena.
Right now it contains extent_hooks and a new option,
metadata_use_hooks, which controls whether the extent
hooks are also used for metadata allocation.
The medata_use_hooks option has two main use cases:
1. In heterogeneous memory systems, to avoid metadata
being placed on potentially slower memory.
2. Avoiding virtual memory from being leaked as a result
of metadata allocation failure originating in an extent hook.
Existing backtrace implementations skip native stack frames from runtimes like
Python. The hook allows to augment the backtraces to attribute allocations to
native functions in heap profiles.
The prof initialization is done only when opt_prof is true. This change makes
sure the prof_* mallctls only have limited read access (i.e. no access to prof
internals) when opt_prof is false.
In addition, initialize the global prof mutexes even if opt_prof is false. This
makes sure the mutex stats are set properly.
This change allows every allocator conforming to PAI communicate that it
deferred some work for the future. Without it if a background thread goes into
indefinite sleep, there is no way to notify it about upcoming deferred work.
Previously the calculation of sleep time between wakeups was implemented within
background_thread. This resulted in some parts of decay and hpa specific
logic mixing with background thread implementation. In this change, background
thread delegates this calculation to arena and it, in turn, delegates it to PAI.
The next step is to implement the actual calculation of time until deferred work
in HPA.
Specifically, this change allows the default alloc hook to used during
arenas.create. One use case is to invoke the default alloc hook in a customized
hook arena, i.e. the default hooks can be read out of a default arena, then
create customized ones based on these hooks. Note that mixing the default with
customized hooks is not recommended, and should only be considered when the
customization is simple and straightforward.
The recent pairing heap optimizations flattened the lock hold time profile.
This was a win for raw cycle counts, but ended up causing us to "just miss"
acquiring the mutex before sleeping more often. Bump those counts.
By force-inlining everything that would otherwise be a macro, we get the same
effect (it's not clear in the first place that this is actually a good idea, but
it avoids making any changes to the existing performance profile).
This makes the code more maintainable (in anticipation of subsequent changes),
as well as making performance profiles and debug info more readable (we get
"real" line numbers, instead of making everything point to the macro definition
of all associated functions).
The edata_cache_small had a fill/flush heuristic. In retrospect, this was a
premature optimization; more testing indicates that an unbounded cache is
effectively fine here, and moreover we spend a nontrivial amount of time doing
unnecessary filling/flushing.
As the HPA takes on a larger and larger fraction of all allocations, any
theoretical differences in allocation patterns should shrink. The HPA is more
efficient with its metadata in general, so it still comes out ahead on metadata
usage anyways.
We wait a while after deciding a huge extent should get hugified to see if it
gets purged before long. This avoids hugifying extents that might shortly get
dehugified for purging.
Rename and use the hpa_dehugification_threshold option support code for this,
since it's now ignored.
This fixes two simple but significant typos in the HPA:
- The conf string parsing accidentally set a min value of PAGE for
hpa_sec_batch_fill_extra; i.e. allocating 4096 extra pages every time we
attempted to allocate a single page. This puts us over the SEC flush limit,
so we then immediately flush all but one of them (probably triggering
purging).
- The HPA was using the default PAI batch alloc implementation, which meant it
did not actually get any locking advantages.
This snuck by because I did all the performance testing without using the PAI
interface or config settings. When I cleaned it up and put everything behind
nice interfaces, I only did correctness checks, and didn't try any performance
ones.
Hold the ecache lock across extent_recycle_extract() and extent_recycle_split(),
so that the extent_deactivate after split can avoid re-take the ecache mutex.
Now that all merging go through try_acquire_edata_neighbor, the mergeablility
checks (including head state checking) are done before reaching the merge hook.
In other words, merge hook will never be called if the head state doesn't agree.
Instead of passing down the new_addr, pass down the active edata which allows us
to always use a neighbor-acquiring semantic. In other words, this tells us both
the original edata and neighbor address. With this change, only neighbors of a
"known" edata can be acquired, i.e. acquiring an edata based on an arbitrary
address isn't possible anymore.