server-skynet-source-3rd-je.../src/arena.c
2020-08-11 11:56:43 -07:00

1718 lines
49 KiB
C

#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/decay.h"
#include "jemalloc/internal/div.h"
#include "jemalloc/internal/ehooks.h"
#include "jemalloc/internal/extent_dss.h"
#include "jemalloc/internal/extent_mmap.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/rtree.h"
#include "jemalloc/internal/safety_check.h"
#include "jemalloc/internal/util.h"
JEMALLOC_DIAGNOSTIC_DISABLE_SPURIOUS
/******************************************************************************/
/* Data. */
/*
* Define names for both unininitialized and initialized phases, so that
* options and mallctl processing are straightforward.
*/
const char *percpu_arena_mode_names[] = {
"percpu",
"phycpu",
"disabled",
"percpu",
"phycpu"
};
percpu_arena_mode_t opt_percpu_arena = PERCPU_ARENA_DEFAULT;
ssize_t opt_dirty_decay_ms = DIRTY_DECAY_MS_DEFAULT;
ssize_t opt_muzzy_decay_ms = MUZZY_DECAY_MS_DEFAULT;
static atomic_zd_t dirty_decay_ms_default;
static atomic_zd_t muzzy_decay_ms_default;
emap_t arena_emap_global;
const uint64_t h_steps[SMOOTHSTEP_NSTEPS] = {
#define STEP(step, h, x, y) \
h,
SMOOTHSTEP
#undef STEP
};
static div_info_t arena_binind_div_info[SC_NBINS];
size_t opt_oversize_threshold = OVERSIZE_THRESHOLD_DEFAULT;
size_t oversize_threshold = OVERSIZE_THRESHOLD_DEFAULT;
static unsigned huge_arena_ind;
/******************************************************************************/
/*
* Function prototypes for static functions that are referenced prior to
* definition.
*/
static bool arena_decay_dirty(tsdn_t *tsdn, arena_t *arena,
bool is_background_thread, bool all);
static void arena_bin_lower_slab(tsdn_t *tsdn, arena_t *arena, edata_t *slab,
bin_t *bin);
/******************************************************************************/
void
arena_basic_stats_merge(tsdn_t *tsdn, arena_t *arena, unsigned *nthreads,
const char **dss, ssize_t *dirty_decay_ms, ssize_t *muzzy_decay_ms,
size_t *nactive, size_t *ndirty, size_t *nmuzzy) {
*nthreads += arena_nthreads_get(arena, false);
*dss = dss_prec_names[arena_dss_prec_get(arena)];
*dirty_decay_ms = arena_decay_ms_get(arena, extent_state_dirty);
*muzzy_decay_ms = arena_decay_ms_get(arena, extent_state_muzzy);
pa_shard_basic_stats_merge(&arena->pa_shard, nactive, ndirty, nmuzzy);
}
void
arena_stats_merge(tsdn_t *tsdn, arena_t *arena, unsigned *nthreads,
const char **dss, ssize_t *dirty_decay_ms, ssize_t *muzzy_decay_ms,
size_t *nactive, size_t *ndirty, size_t *nmuzzy, arena_stats_t *astats,
bin_stats_data_t *bstats, arena_stats_large_t *lstats,
pac_estats_t *estats) {
cassert(config_stats);
arena_basic_stats_merge(tsdn, arena, nthreads, dss, dirty_decay_ms,
muzzy_decay_ms, nactive, ndirty, nmuzzy);
size_t base_allocated, base_resident, base_mapped, metadata_thp;
base_stats_get(tsdn, arena->base, &base_allocated, &base_resident,
&base_mapped, &metadata_thp);
size_t pac_mapped_sz = pac_mapped(&arena->pa_shard.pac);
astats->mapped += base_mapped + pac_mapped_sz;
astats->resident += base_resident;
LOCKEDINT_MTX_LOCK(tsdn, arena->stats.mtx);
astats->base += base_allocated;
atomic_load_add_store_zu(&astats->internal, arena_internal_get(arena));
astats->metadata_thp += metadata_thp;
for (szind_t i = 0; i < SC_NSIZES - SC_NBINS; i++) {
uint64_t nmalloc = locked_read_u64(tsdn,
LOCKEDINT_MTX(arena->stats.mtx),
&arena->stats.lstats[i].nmalloc);
locked_inc_u64_unsynchronized(&lstats[i].nmalloc, nmalloc);
astats->nmalloc_large += nmalloc;
uint64_t ndalloc = locked_read_u64(tsdn,
LOCKEDINT_MTX(arena->stats.mtx),
&arena->stats.lstats[i].ndalloc);
locked_inc_u64_unsynchronized(&lstats[i].ndalloc, ndalloc);
astats->ndalloc_large += ndalloc;
uint64_t nrequests = locked_read_u64(tsdn,
LOCKEDINT_MTX(arena->stats.mtx),
&arena->stats.lstats[i].nrequests);
locked_inc_u64_unsynchronized(&lstats[i].nrequests,
nmalloc + nrequests);
astats->nrequests_large += nmalloc + nrequests;
/* nfill == nmalloc for large currently. */
locked_inc_u64_unsynchronized(&lstats[i].nfills, nmalloc);
astats->nfills_large += nmalloc;
uint64_t nflush = locked_read_u64(tsdn,
LOCKEDINT_MTX(arena->stats.mtx),
&arena->stats.lstats[i].nflushes);
locked_inc_u64_unsynchronized(&lstats[i].nflushes, nflush);
astats->nflushes_large += nflush;
assert(nmalloc >= ndalloc);
assert(nmalloc - ndalloc <= SIZE_T_MAX);
size_t curlextents = (size_t)(nmalloc - ndalloc);
lstats[i].curlextents += curlextents;
astats->allocated_large +=
curlextents * sz_index2size(SC_NBINS + i);
}
pa_shard_stats_merge(tsdn, &arena->pa_shard, &astats->pa_shard_stats,
estats, &astats->resident);
LOCKEDINT_MTX_UNLOCK(tsdn, arena->stats.mtx);
/* tcache_bytes counts currently cached bytes. */
astats->tcache_bytes = 0;
malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx);
cache_bin_array_descriptor_t *descriptor;
ql_foreach(descriptor, &arena->cache_bin_array_descriptor_ql, link) {
for (szind_t i = 0; i < nhbins; i++) {
cache_bin_t *cache_bin = &descriptor->bins[i];
astats->tcache_bytes +=
cache_bin_ncached_get(cache_bin,
&tcache_bin_info[i]) * sz_index2size(i);
}
}
malloc_mutex_prof_read(tsdn,
&astats->mutex_prof_data[arena_prof_mutex_tcache_list],
&arena->tcache_ql_mtx);
malloc_mutex_unlock(tsdn, &arena->tcache_ql_mtx);
#define READ_ARENA_MUTEX_PROF_DATA(mtx, ind) \
malloc_mutex_lock(tsdn, &arena->mtx); \
malloc_mutex_prof_read(tsdn, &astats->mutex_prof_data[ind], \
&arena->mtx); \
malloc_mutex_unlock(tsdn, &arena->mtx);
/* Gather per arena mutex profiling data. */
READ_ARENA_MUTEX_PROF_DATA(large_mtx, arena_prof_mutex_large);
READ_ARENA_MUTEX_PROF_DATA(base->mtx,
arena_prof_mutex_base);
#undef READ_ARENA_MUTEX_PROF_DATA
pa_shard_mtx_stats_read(tsdn, &arena->pa_shard,
astats->mutex_prof_data);
nstime_copy(&astats->uptime, &arena->create_time);
nstime_update(&astats->uptime);
nstime_subtract(&astats->uptime, &arena->create_time);
for (szind_t i = 0; i < SC_NBINS; i++) {
for (unsigned j = 0; j < bin_infos[i].n_shards; j++) {
bin_stats_merge(tsdn, &bstats[i],
&arena->bins[i].bin_shards[j]);
}
}
}
void arena_handle_new_dirty_pages(tsdn_t *tsdn, arena_t *arena) {
witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
WITNESS_RANK_CORE, 0);
if (arena_decay_ms_get(arena, extent_state_dirty) == 0) {
arena_decay_dirty(tsdn, arena, false, true);
} else {
arena_background_thread_inactivity_check(tsdn, arena, false);
}
}
static void *
arena_slab_reg_alloc(edata_t *slab, const bin_info_t *bin_info) {
void *ret;
slab_data_t *slab_data = edata_slab_data_get(slab);
size_t regind;
assert(edata_nfree_get(slab) > 0);
assert(!bitmap_full(slab_data->bitmap, &bin_info->bitmap_info));
regind = bitmap_sfu(slab_data->bitmap, &bin_info->bitmap_info);
ret = (void *)((uintptr_t)edata_addr_get(slab) +
(uintptr_t)(bin_info->reg_size * regind));
edata_nfree_dec(slab);
return ret;
}
static void
arena_slab_reg_alloc_batch(edata_t *slab, const bin_info_t *bin_info,
unsigned cnt, void** ptrs) {
slab_data_t *slab_data = edata_slab_data_get(slab);
assert(edata_nfree_get(slab) >= cnt);
assert(!bitmap_full(slab_data->bitmap, &bin_info->bitmap_info));
#if (! defined JEMALLOC_INTERNAL_POPCOUNTL) || (defined BITMAP_USE_TREE)
for (unsigned i = 0; i < cnt; i++) {
size_t regind = bitmap_sfu(slab_data->bitmap,
&bin_info->bitmap_info);
*(ptrs + i) = (void *)((uintptr_t)edata_addr_get(slab) +
(uintptr_t)(bin_info->reg_size * regind));
}
#else
unsigned group = 0;
bitmap_t g = slab_data->bitmap[group];
unsigned i = 0;
while (i < cnt) {
while (g == 0) {
g = slab_data->bitmap[++group];
}
size_t shift = group << LG_BITMAP_GROUP_NBITS;
size_t pop = popcount_lu(g);
if (pop > (cnt - i)) {
pop = cnt - i;
}
/*
* Load from memory locations only once, outside the
* hot loop below.
*/
uintptr_t base = (uintptr_t)edata_addr_get(slab);
uintptr_t regsize = (uintptr_t)bin_info->reg_size;
while (pop--) {
size_t bit = cfs_lu(&g);
size_t regind = shift + bit;
*(ptrs + i) = (void *)(base + regsize * regind);
i++;
}
slab_data->bitmap[group] = g;
}
#endif
edata_nfree_sub(slab, cnt);
}
#ifndef JEMALLOC_JET
static
#endif
size_t
arena_slab_regind(edata_t *slab, szind_t binind, const void *ptr) {
size_t diff, regind;
/* Freeing a pointer outside the slab can cause assertion failure. */
assert((uintptr_t)ptr >= (uintptr_t)edata_addr_get(slab));
assert((uintptr_t)ptr < (uintptr_t)edata_past_get(slab));
/* Freeing an interior pointer can cause assertion failure. */
assert(((uintptr_t)ptr - (uintptr_t)edata_addr_get(slab)) %
(uintptr_t)bin_infos[binind].reg_size == 0);
diff = (size_t)((uintptr_t)ptr - (uintptr_t)edata_addr_get(slab));
/* Avoid doing division with a variable divisor. */
regind = div_compute(&arena_binind_div_info[binind], diff);
assert(regind < bin_infos[binind].nregs);
return regind;
}
static void
arena_slab_reg_dalloc(edata_t *slab, slab_data_t *slab_data, void *ptr) {
szind_t binind = edata_szind_get(slab);
const bin_info_t *bin_info = &bin_infos[binind];
size_t regind = arena_slab_regind(slab, binind, ptr);
assert(edata_nfree_get(slab) < bin_info->nregs);
/* Freeing an unallocated pointer can cause assertion failure. */
assert(bitmap_get(slab_data->bitmap, &bin_info->bitmap_info, regind));
bitmap_unset(slab_data->bitmap, &bin_info->bitmap_info, regind);
edata_nfree_inc(slab);
}
static void
arena_large_malloc_stats_update(tsdn_t *tsdn, arena_t *arena, size_t usize) {
szind_t index, hindex;
cassert(config_stats);
if (usize < SC_LARGE_MINCLASS) {
usize = SC_LARGE_MINCLASS;
}
index = sz_size2index(usize);
hindex = (index >= SC_NBINS) ? index - SC_NBINS : 0;
locked_inc_u64(tsdn, LOCKEDINT_MTX(arena->stats.mtx),
&arena->stats.lstats[hindex].nmalloc, 1);
}
static void
arena_large_dalloc_stats_update(tsdn_t *tsdn, arena_t *arena, size_t usize) {
szind_t index, hindex;
cassert(config_stats);
if (usize < SC_LARGE_MINCLASS) {
usize = SC_LARGE_MINCLASS;
}
index = sz_size2index(usize);
hindex = (index >= SC_NBINS) ? index - SC_NBINS : 0;
locked_inc_u64(tsdn, LOCKEDINT_MTX(arena->stats.mtx),
&arena->stats.lstats[hindex].ndalloc, 1);
}
static void
arena_large_ralloc_stats_update(tsdn_t *tsdn, arena_t *arena, size_t oldusize,
size_t usize) {
arena_large_dalloc_stats_update(tsdn, arena, oldusize);
arena_large_malloc_stats_update(tsdn, arena, usize);
}
edata_t *
arena_extent_alloc_large(tsdn_t *tsdn, arena_t *arena, size_t usize,
size_t alignment, bool zero) {
szind_t szind = sz_size2index(usize);
size_t esize = usize + sz_large_pad;
edata_t *edata = pa_alloc(tsdn, &arena->pa_shard, esize, alignment,
/* slab */ false, szind, zero);
if (edata != NULL) {
if (config_stats) {
LOCKEDINT_MTX_LOCK(tsdn, arena->stats.mtx);
arena_large_malloc_stats_update(tsdn, arena, usize);
LOCKEDINT_MTX_UNLOCK(tsdn, arena->stats.mtx);
}
}
if (edata != NULL && sz_large_pad != 0) {
arena_cache_oblivious_randomize(tsdn, arena, edata, alignment);
}
return edata;
}
void
arena_extent_dalloc_large_prep(tsdn_t *tsdn, arena_t *arena, edata_t *edata) {
if (config_stats) {
LOCKEDINT_MTX_LOCK(tsdn, arena->stats.mtx);
arena_large_dalloc_stats_update(tsdn, arena,
edata_usize_get(edata));
LOCKEDINT_MTX_UNLOCK(tsdn, arena->stats.mtx);
}
}
void
arena_extent_ralloc_large_shrink(tsdn_t *tsdn, arena_t *arena, edata_t *edata,
size_t oldusize) {
size_t usize = edata_usize_get(edata);
if (config_stats) {
LOCKEDINT_MTX_LOCK(tsdn, arena->stats.mtx);
arena_large_ralloc_stats_update(tsdn, arena, oldusize, usize);
LOCKEDINT_MTX_UNLOCK(tsdn, arena->stats.mtx);
}
}
void
arena_extent_ralloc_large_expand(tsdn_t *tsdn, arena_t *arena, edata_t *edata,
size_t oldusize) {
size_t usize = edata_usize_get(edata);
if (config_stats) {
LOCKEDINT_MTX_LOCK(tsdn, arena->stats.mtx);
arena_large_ralloc_stats_update(tsdn, arena, oldusize, usize);
LOCKEDINT_MTX_UNLOCK(tsdn, arena->stats.mtx);
}
}
/*
* In situations where we're not forcing a decay (i.e. because the user
* specifically requested it), should we purge ourselves, or wait for the
* background thread to get to it.
*/
static pac_purge_eagerness_t
arena_decide_unforced_purge_eagerness(bool is_background_thread) {
if (is_background_thread) {
return PAC_PURGE_ALWAYS;
} else if (!is_background_thread && background_thread_enabled()) {
return PAC_PURGE_NEVER;
} else {
return PAC_PURGE_ON_EPOCH_ADVANCE;
}
}
bool
arena_decay_ms_set(tsdn_t *tsdn, arena_t *arena, extent_state_t state,
ssize_t decay_ms) {
pac_purge_eagerness_t eagerness = arena_decide_unforced_purge_eagerness(
/* is_background_thread */ false);
return pa_decay_ms_set(tsdn, &arena->pa_shard, state, decay_ms,
eagerness);
}
ssize_t
arena_decay_ms_get(arena_t *arena, extent_state_t state) {
return pa_decay_ms_get(&arena->pa_shard, state);
}
static bool
arena_decay_impl(tsdn_t *tsdn, arena_t *arena, decay_t *decay,
pac_decay_stats_t *decay_stats, ecache_t *ecache,
bool is_background_thread, bool all) {
if (all) {
malloc_mutex_lock(tsdn, &decay->mtx);
pac_decay_all(tsdn, &arena->pa_shard.pac, decay, decay_stats,
ecache, /* fully_decay */ all);
malloc_mutex_unlock(tsdn, &decay->mtx);
return false;
}
if (malloc_mutex_trylock(tsdn, &decay->mtx)) {
/* No need to wait if another thread is in progress. */
return true;
}
pac_purge_eagerness_t eagerness =
arena_decide_unforced_purge_eagerness(is_background_thread);
bool epoch_advanced = pac_maybe_decay_purge(tsdn, &arena->pa_shard.pac,
decay, decay_stats, ecache, eagerness);
size_t npages_new;
if (epoch_advanced) {
/* Backlog is updated on epoch advance. */
npages_new = decay_epoch_npages_delta(decay);
}
malloc_mutex_unlock(tsdn, &decay->mtx);
if (have_background_thread && background_thread_enabled() &&
epoch_advanced && !is_background_thread) {
background_thread_interval_check(tsdn, arena, decay,
npages_new);
}
return false;
}
static bool
arena_decay_dirty(tsdn_t *tsdn, arena_t *arena, bool is_background_thread,
bool all) {
return arena_decay_impl(tsdn, arena, &arena->pa_shard.pac.decay_dirty,
&arena->pa_shard.pac.stats->decay_dirty,
&arena->pa_shard.pac.ecache_dirty, is_background_thread, all);
}
static bool
arena_decay_muzzy(tsdn_t *tsdn, arena_t *arena, bool is_background_thread,
bool all) {
if (pa_shard_dont_decay_muzzy(&arena->pa_shard)) {
return false;
}
return arena_decay_impl(tsdn, arena, &arena->pa_shard.pac.decay_muzzy,
&arena->pa_shard.pac.stats->decay_muzzy,
&arena->pa_shard.pac.ecache_muzzy, is_background_thread, all);
}
void
arena_decay(tsdn_t *tsdn, arena_t *arena, bool is_background_thread, bool all) {
if (arena_decay_dirty(tsdn, arena, is_background_thread, all)) {
return;
}
arena_decay_muzzy(tsdn, arena, is_background_thread, all);
}
void
arena_slab_dalloc(tsdn_t *tsdn, arena_t *arena, edata_t *slab) {
bool generated_dirty;
pa_dalloc(tsdn, &arena->pa_shard, slab, &generated_dirty);
if (generated_dirty) {
arena_handle_new_dirty_pages(tsdn, arena);
}
}
static void
arena_bin_slabs_nonfull_insert(bin_t *bin, edata_t *slab) {
assert(edata_nfree_get(slab) > 0);
edata_heap_insert(&bin->slabs_nonfull, slab);
if (config_stats) {
bin->stats.nonfull_slabs++;
}
}
static void
arena_bin_slabs_nonfull_remove(bin_t *bin, edata_t *slab) {
edata_heap_remove(&bin->slabs_nonfull, slab);
if (config_stats) {
bin->stats.nonfull_slabs--;
}
}
static edata_t *
arena_bin_slabs_nonfull_tryget(bin_t *bin) {
edata_t *slab = edata_heap_remove_first(&bin->slabs_nonfull);
if (slab == NULL) {
return NULL;
}
if (config_stats) {
bin->stats.reslabs++;
bin->stats.nonfull_slabs--;
}
return slab;
}
static void
arena_bin_slabs_full_insert(arena_t *arena, bin_t *bin, edata_t *slab) {
assert(edata_nfree_get(slab) == 0);
/*
* Tracking extents is required by arena_reset, which is not allowed
* for auto arenas. Bypass this step to avoid touching the edata
* linkage (often results in cache misses) for auto arenas.
*/
if (arena_is_auto(arena)) {
return;
}
edata_list_active_append(&bin->slabs_full, slab);
}
static void
arena_bin_slabs_full_remove(arena_t *arena, bin_t *bin, edata_t *slab) {
if (arena_is_auto(arena)) {
return;
}
edata_list_active_remove(&bin->slabs_full, slab);
}
static void
arena_bin_reset(tsd_t *tsd, arena_t *arena, bin_t *bin) {
edata_t *slab;
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
if (bin->slabcur != NULL) {
slab = bin->slabcur;
bin->slabcur = NULL;
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
arena_slab_dalloc(tsd_tsdn(tsd), arena, slab);
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
}
while ((slab = edata_heap_remove_first(&bin->slabs_nonfull)) != NULL) {
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
arena_slab_dalloc(tsd_tsdn(tsd), arena, slab);
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
}
for (slab = edata_list_active_first(&bin->slabs_full); slab != NULL;
slab = edata_list_active_first(&bin->slabs_full)) {
arena_bin_slabs_full_remove(arena, bin, slab);
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
arena_slab_dalloc(tsd_tsdn(tsd), arena, slab);
malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock);
}
if (config_stats) {
bin->stats.curregs = 0;
bin->stats.curslabs = 0;
}
malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock);
}
void
arena_reset(tsd_t *tsd, arena_t *arena) {
/*
* Locking in this function is unintuitive. The caller guarantees that
* no concurrent operations are happening in this arena, but there are
* still reasons that some locking is necessary:
*
* - Some of the functions in the transitive closure of calls assume
* appropriate locks are held, and in some cases these locks are
* temporarily dropped to avoid lock order reversal or deadlock due to
* reentry.
* - mallctl("epoch", ...) may concurrently refresh stats. While
* strictly speaking this is a "concurrent operation", disallowing
* stats refreshes would impose an inconvenient burden.
*/
/* Large allocations. */
malloc_mutex_lock(tsd_tsdn(tsd), &arena->large_mtx);
for (edata_t *edata = edata_list_active_first(&arena->large);
edata != NULL; edata = edata_list_active_first(&arena->large)) {
void *ptr = edata_base_get(edata);
size_t usize;
malloc_mutex_unlock(tsd_tsdn(tsd), &arena->large_mtx);
emap_alloc_ctx_t alloc_ctx;
emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr,
&alloc_ctx);
assert(alloc_ctx.szind != SC_NSIZES);
if (config_stats || (config_prof && opt_prof)) {
usize = sz_index2size(alloc_ctx.szind);
assert(usize == isalloc(tsd_tsdn(tsd), ptr));
}
/* Remove large allocation from prof sample set. */
if (config_prof && opt_prof) {
prof_free(tsd, ptr, usize, &alloc_ctx);
}
large_dalloc(tsd_tsdn(tsd), edata);
malloc_mutex_lock(tsd_tsdn(tsd), &arena->large_mtx);
}
malloc_mutex_unlock(tsd_tsdn(tsd), &arena->large_mtx);
/* Bins. */
for (unsigned i = 0; i < SC_NBINS; i++) {
for (unsigned j = 0; j < bin_infos[i].n_shards; j++) {
arena_bin_reset(tsd, arena,
&arena->bins[i].bin_shards[j]);
}
}
pa_shard_reset(&arena->pa_shard);
}
void
arena_destroy(tsd_t *tsd, arena_t *arena) {
assert(base_ind_get(arena->base) >= narenas_auto);
assert(arena_nthreads_get(arena, false) == 0);
assert(arena_nthreads_get(arena, true) == 0);
/*
* No allocations have occurred since arena_reset() was called.
* Furthermore, the caller (arena_i_destroy_ctl()) purged all cached
* extents, so only retained extents may remain and it's safe to call
* pa_shard_destroy_retained.
*/
pa_shard_destroy(tsd_tsdn(tsd), &arena->pa_shard);
/*
* Remove the arena pointer from the arenas array. We rely on the fact
* that there is no way for the application to get a dirty read from the
* arenas array unless there is an inherent race in the application
* involving access of an arena being concurrently destroyed. The
* application must synchronize knowledge of the arena's validity, so as
* long as we use an atomic write to update the arenas array, the
* application will get a clean read any time after it synchronizes
* knowledge that the arena is no longer valid.
*/
arena_set(base_ind_get(arena->base), NULL);
/*
* Destroy the base allocator, which manages all metadata ever mapped by
* this arena.
*/
base_delete(tsd_tsdn(tsd), arena->base);
}
static edata_t *
arena_slab_alloc(tsdn_t *tsdn, arena_t *arena, szind_t binind, unsigned binshard,
const bin_info_t *bin_info) {
witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
WITNESS_RANK_CORE, 0);
edata_t *slab = pa_alloc(tsdn, &arena->pa_shard, bin_info->slab_size,
PAGE, /* slab */ true, /* szind */ binind, /* zero */ false);
if (slab == NULL) {
return NULL;
}
assert(edata_slab_get(slab));
/* Initialize slab internals. */
slab_data_t *slab_data = edata_slab_data_get(slab);
edata_nfree_binshard_set(slab, bin_info->nregs, binshard);
bitmap_init(slab_data->bitmap, &bin_info->bitmap_info, false);
return slab;
}
/*
* Before attempting the _with_fresh_slab approaches below, the _no_fresh_slab
* variants (i.e. through slabcur and nonfull) must be tried first.
*/
static void
arena_bin_refill_slabcur_with_fresh_slab(tsdn_t *tsdn, arena_t *arena,
bin_t *bin, szind_t binind, edata_t *fresh_slab) {
malloc_mutex_assert_owner(tsdn, &bin->lock);
/* Only called after slabcur and nonfull both failed. */
assert(bin->slabcur == NULL);
assert(edata_heap_first(&bin->slabs_nonfull) == NULL);
assert(fresh_slab != NULL);
/* A new slab from arena_slab_alloc() */
assert(edata_nfree_get(fresh_slab) == bin_infos[binind].nregs);
if (config_stats) {
bin->stats.nslabs++;
bin->stats.curslabs++;
}
bin->slabcur = fresh_slab;
}
/* Refill slabcur and then alloc using the fresh slab */
static void *
arena_bin_malloc_with_fresh_slab(tsdn_t *tsdn, arena_t *arena, bin_t *bin,
szind_t binind, edata_t *fresh_slab) {
malloc_mutex_assert_owner(tsdn, &bin->lock);
arena_bin_refill_slabcur_with_fresh_slab(tsdn, arena, bin, binind,
fresh_slab);
return arena_slab_reg_alloc(bin->slabcur, &bin_infos[binind]);
}
static bool
arena_bin_refill_slabcur_no_fresh_slab(tsdn_t *tsdn, arena_t *arena,
bin_t *bin) {
malloc_mutex_assert_owner(tsdn, &bin->lock);
/* Only called after arena_slab_reg_alloc[_batch] failed. */
assert(bin->slabcur == NULL || edata_nfree_get(bin->slabcur) == 0);
if (bin->slabcur != NULL) {
arena_bin_slabs_full_insert(arena, bin, bin->slabcur);
}
/* Look for a usable slab. */
bin->slabcur = arena_bin_slabs_nonfull_tryget(bin);
assert(bin->slabcur == NULL || edata_nfree_get(bin->slabcur) > 0);
return (bin->slabcur == NULL);
}
bin_t *
arena_bin_choose(tsdn_t *tsdn, arena_t *arena, szind_t binind,
unsigned *binshard_p) {
unsigned binshard;
if (tsdn_null(tsdn) || tsd_arena_get(tsdn_tsd(tsdn)) == NULL) {
binshard = 0;
} else {
binshard = tsd_binshardsp_get(tsdn_tsd(tsdn))->binshard[binind];
}
assert(binshard < bin_infos[binind].n_shards);
if (binshard_p != NULL) {
*binshard_p = binshard;
}
return &arena->bins[binind].bin_shards[binshard];
}
void
arena_cache_bin_fill_small(tsdn_t *tsdn, arena_t *arena,
cache_bin_t *cache_bin, cache_bin_info_t *cache_bin_info, szind_t binind,
const unsigned nfill) {
assert(cache_bin_ncached_get(cache_bin, cache_bin_info) == 0);
const bin_info_t *bin_info = &bin_infos[binind];
CACHE_BIN_PTR_ARRAY_DECLARE(ptrs, nfill);
cache_bin_init_ptr_array_for_fill(cache_bin, cache_bin_info, &ptrs,
nfill);
/*
* Bin-local resources are used first: 1) bin->slabcur, and 2) nonfull
* slabs. After both are exhausted, new slabs will be allocated through
* arena_slab_alloc().
*
* Bin lock is only taken / released right before / after the while(...)
* refill loop, with new slab allocation (which has its own locking)
* kept outside of the loop. This setup facilitates flat combining, at
* the cost of the nested loop (through goto label_refill).
*
* To optimize for cases with contention and limited resources
* (e.g. hugepage-backed or non-overcommit arenas), each fill-iteration
* gets one chance of slab_alloc, and a retry of bin local resources
* after the slab allocation (regardless if slab_alloc failed, because
* the bin lock is dropped during the slab allocation).
*
* In other words, new slab allocation is allowed, as long as there was
* progress since the previous slab_alloc. This is tracked with
* made_progress below, initialized to true to jump start the first
* iteration.
*
* In other words (again), the loop will only terminate early (i.e. stop
* with filled < nfill) after going through the three steps: a) bin
* local exhausted, b) unlock and slab_alloc returns null, c) re-lock
* and bin local fails again.
*/
bool made_progress = true;
edata_t *fresh_slab = NULL;
bool alloc_and_retry = false;
unsigned filled = 0;
unsigned binshard;
bin_t *bin = arena_bin_choose(tsdn, arena, binind, &binshard);
label_refill:
malloc_mutex_lock(tsdn, &bin->lock);
while (filled < nfill) {
/* Try batch-fill from slabcur first. */
edata_t *slabcur = bin->slabcur;
if (slabcur != NULL && edata_nfree_get(slabcur) > 0) {
unsigned tofill = nfill - filled;
unsigned nfree = edata_nfree_get(slabcur);
unsigned cnt = tofill < nfree ? tofill : nfree;
arena_slab_reg_alloc_batch(slabcur, bin_info, cnt,
&ptrs.ptr[filled]);
made_progress = true;
filled += cnt;
continue;
}
/* Next try refilling slabcur from nonfull slabs. */
if (!arena_bin_refill_slabcur_no_fresh_slab(tsdn, arena, bin)) {
assert(bin->slabcur != NULL);
continue;
}
/* Then see if a new slab was reserved already. */
if (fresh_slab != NULL) {
arena_bin_refill_slabcur_with_fresh_slab(tsdn, arena,
bin, binind, fresh_slab);
assert(bin->slabcur != NULL);
fresh_slab = NULL;
continue;
}
/* Try slab_alloc if made progress (or never did slab_alloc). */
if (made_progress) {
assert(bin->slabcur == NULL);
assert(fresh_slab == NULL);
alloc_and_retry = true;
/* Alloc a new slab then come back. */
break;
}
/* OOM. */
assert(fresh_slab == NULL);
assert(!alloc_and_retry);
break;
} /* while (filled < nfill) loop. */
if (config_stats && !alloc_and_retry) {
bin->stats.nmalloc += filled;
bin->stats.nrequests += cache_bin->tstats.nrequests;
bin->stats.curregs += filled;
bin->stats.nfills++;
cache_bin->tstats.nrequests = 0;
}
malloc_mutex_unlock(tsdn, &bin->lock);
if (alloc_and_retry) {
assert(fresh_slab == NULL);
assert(filled < nfill);
assert(made_progress);
fresh_slab = arena_slab_alloc(tsdn, arena, binind, binshard,
bin_info);
/* fresh_slab NULL case handled in the for loop. */
alloc_and_retry = false;
made_progress = false;
goto label_refill;
}
assert(filled == nfill || (fresh_slab == NULL && !made_progress));
/* Release if allocated but not used. */
if (fresh_slab != NULL) {
assert(edata_nfree_get(fresh_slab) == bin_info->nregs);
arena_slab_dalloc(tsdn, arena, fresh_slab);
fresh_slab = NULL;
}
cache_bin_finish_fill(cache_bin, cache_bin_info, &ptrs, filled);
arena_decay_tick(tsdn, arena);
}
size_t
arena_fill_small_fresh(tsdn_t *tsdn, arena_t *arena, szind_t binind,
void **ptrs, size_t nfill, bool zero) {
assert(binind < SC_NBINS);
const bin_info_t *bin_info = &bin_infos[binind];
const size_t nregs = bin_info->nregs;
assert(nregs > 0);
const size_t usize = bin_info->reg_size;
const bool manual_arena = !arena_is_auto(arena);
unsigned binshard;
bin_t *bin = arena_bin_choose(tsdn, arena, binind, &binshard);
size_t nslab = 0;
size_t filled = 0;
edata_t *slab = NULL;
edata_list_active_t fulls;
edata_list_active_init(&fulls);
while (filled < nfill && (slab = arena_slab_alloc(tsdn, arena, binind,
binshard, bin_info)) != NULL) {
assert((size_t)edata_nfree_get(slab) == nregs);
++nslab;
size_t batch = nfill - filled;
if (batch > nregs) {
batch = nregs;
}
assert(batch > 0);
arena_slab_reg_alloc_batch(slab, bin_info, (unsigned)batch,
&ptrs[filled]);
assert(edata_addr_get(slab) == ptrs[filled]);
if (zero) {
memset(ptrs[filled], 0, batch * usize);
}
filled += batch;
if (batch == nregs) {
if (manual_arena) {
edata_list_active_append(&fulls, slab);
}
slab = NULL;
}
}
malloc_mutex_lock(tsdn, &bin->lock);
/*
* Only the last slab can be non-empty, and the last slab is non-empty
* iff slab != NULL.
*/
if (slab != NULL) {
arena_bin_lower_slab(tsdn, arena, slab, bin);
}
if (manual_arena) {
edata_list_active_concat(&bin->slabs_full, &fulls);
}
assert(edata_list_active_empty(&fulls));
if (config_stats) {
bin->stats.nslabs += nslab;
bin->stats.curslabs += nslab;
bin->stats.nmalloc += filled;
bin->stats.nrequests += filled;
bin->stats.curregs += filled;
}
malloc_mutex_unlock(tsdn, &bin->lock);
arena_decay_tick(tsdn, arena);
return filled;
}
/*
* Without allocating a new slab, try arena_slab_reg_alloc() and re-fill
* bin->slabcur if necessary.
*/
static void *
arena_bin_malloc_no_fresh_slab(tsdn_t *tsdn, arena_t *arena, bin_t *bin,
szind_t binind) {
malloc_mutex_assert_owner(tsdn, &bin->lock);
if (bin->slabcur == NULL || edata_nfree_get(bin->slabcur) == 0) {
if (arena_bin_refill_slabcur_no_fresh_slab(tsdn, arena, bin)) {
return NULL;
}
}
assert(bin->slabcur != NULL && edata_nfree_get(bin->slabcur) > 0);
return arena_slab_reg_alloc(bin->slabcur, &bin_infos[binind]);
}
static void *
arena_malloc_small(tsdn_t *tsdn, arena_t *arena, szind_t binind, bool zero) {
assert(binind < SC_NBINS);
const bin_info_t *bin_info = &bin_infos[binind];
size_t usize = sz_index2size(binind);
unsigned binshard;
bin_t *bin = arena_bin_choose(tsdn, arena, binind, &binshard);
malloc_mutex_lock(tsdn, &bin->lock);
edata_t *fresh_slab = NULL;
void *ret = arena_bin_malloc_no_fresh_slab(tsdn, arena, bin, binind);
if (ret == NULL) {
malloc_mutex_unlock(tsdn, &bin->lock);
/******************************/
fresh_slab = arena_slab_alloc(tsdn, arena, binind, binshard,
bin_info);
/********************************/
malloc_mutex_lock(tsdn, &bin->lock);
/* Retry since the lock was dropped. */
ret = arena_bin_malloc_no_fresh_slab(tsdn, arena, bin, binind);
if (ret == NULL) {
if (fresh_slab == NULL) {
/* OOM */
malloc_mutex_unlock(tsdn, &bin->lock);
return NULL;
}
ret = arena_bin_malloc_with_fresh_slab(tsdn, arena, bin,
binind, fresh_slab);
fresh_slab = NULL;
}
}
if (config_stats) {
bin->stats.nmalloc++;
bin->stats.nrequests++;
bin->stats.curregs++;
}
malloc_mutex_unlock(tsdn, &bin->lock);
if (fresh_slab != NULL) {
arena_slab_dalloc(tsdn, arena, fresh_slab);
}
if (zero) {
memset(ret, 0, usize);
}
arena_decay_tick(tsdn, arena);
return ret;
}
void *
arena_malloc_hard(tsdn_t *tsdn, arena_t *arena, size_t size, szind_t ind,
bool zero) {
assert(!tsdn_null(tsdn) || arena != NULL);
if (likely(!tsdn_null(tsdn))) {
arena = arena_choose_maybe_huge(tsdn_tsd(tsdn), arena, size);
}
if (unlikely(arena == NULL)) {
return NULL;
}
if (likely(size <= SC_SMALL_MAXCLASS)) {
return arena_malloc_small(tsdn, arena, ind, zero);
}
return large_malloc(tsdn, arena, sz_index2size(ind), zero);
}
void *
arena_palloc(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment,
bool zero, tcache_t *tcache) {
void *ret;
if (usize <= SC_SMALL_MAXCLASS
&& (alignment < PAGE
|| (alignment == PAGE && (usize & PAGE_MASK) == 0))) {
/* Small; alignment doesn't require special slab placement. */
ret = arena_malloc(tsdn, arena, usize, sz_size2index(usize),
zero, tcache, true);
} else {
if (likely(alignment <= CACHELINE)) {
ret = large_malloc(tsdn, arena, usize, zero);
} else {
ret = large_palloc(tsdn, arena, usize, alignment, zero);
}
}
return ret;
}
void
arena_prof_promote(tsdn_t *tsdn, void *ptr, size_t usize) {
cassert(config_prof);
assert(ptr != NULL);
assert(isalloc(tsdn, ptr) == SC_LARGE_MINCLASS);
assert(usize <= SC_SMALL_MAXCLASS);
if (config_opt_safety_checks) {
safety_check_set_redzone(ptr, usize, SC_LARGE_MINCLASS);
}
edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global, ptr);
szind_t szind = sz_size2index(usize);
edata_szind_set(edata, szind);
emap_remap(tsdn, &arena_emap_global, edata, szind, /* slab */ false);
assert(isalloc(tsdn, ptr) == usize);
}
static size_t
arena_prof_demote(tsdn_t *tsdn, edata_t *edata, const void *ptr) {
cassert(config_prof);
assert(ptr != NULL);
edata_szind_set(edata, SC_NBINS);
emap_remap(tsdn, &arena_emap_global, edata, SC_NBINS, /* slab */ false);
assert(isalloc(tsdn, ptr) == SC_LARGE_MINCLASS);
return SC_LARGE_MINCLASS;
}
void
arena_dalloc_promoted(tsdn_t *tsdn, void *ptr, tcache_t *tcache,
bool slow_path) {
cassert(config_prof);
assert(opt_prof);
edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global, ptr);
size_t usize = edata_usize_get(edata);
size_t bumped_usize = arena_prof_demote(tsdn, edata, ptr);
if (config_opt_safety_checks && usize < SC_LARGE_MINCLASS) {
/*
* Currently, we only do redzoning for small sampled
* allocations.
*/
assert(bumped_usize == SC_LARGE_MINCLASS);
safety_check_verify_redzone(ptr, usize, bumped_usize);
}
if (bumped_usize <= tcache_maxclass && tcache != NULL) {
tcache_dalloc_large(tsdn_tsd(tsdn), tcache, ptr,
sz_size2index(bumped_usize), slow_path);
} else {
large_dalloc(tsdn, edata);
}
}
static void
arena_dissociate_bin_slab(arena_t *arena, edata_t *slab, bin_t *bin) {
/* Dissociate slab from bin. */
if (slab == bin->slabcur) {
bin->slabcur = NULL;
} else {
szind_t binind = edata_szind_get(slab);
const bin_info_t *bin_info = &bin_infos[binind];
/*
* The following block's conditional is necessary because if the
* slab only contains one region, then it never gets inserted
* into the non-full slabs heap.
*/
if (bin_info->nregs == 1) {
arena_bin_slabs_full_remove(arena, bin, slab);
} else {
arena_bin_slabs_nonfull_remove(bin, slab);
}
}
}
static void
arena_bin_lower_slab(tsdn_t *tsdn, arena_t *arena, edata_t *slab,
bin_t *bin) {
assert(edata_nfree_get(slab) > 0);
/*
* Make sure that if bin->slabcur is non-NULL, it refers to the
* oldest/lowest non-full slab. It is okay to NULL slabcur out rather
* than proactively keeping it pointing at the oldest/lowest non-full
* slab.
*/
if (bin->slabcur != NULL && edata_snad_comp(bin->slabcur, slab) > 0) {
/* Switch slabcur. */
if (edata_nfree_get(bin->slabcur) > 0) {
arena_bin_slabs_nonfull_insert(bin, bin->slabcur);
} else {
arena_bin_slabs_full_insert(arena, bin, bin->slabcur);
}
bin->slabcur = slab;
if (config_stats) {
bin->stats.reslabs++;
}
} else {
arena_bin_slabs_nonfull_insert(bin, slab);
}
}
static void
arena_dalloc_bin_slab_prepare(tsdn_t *tsdn, edata_t *slab, bin_t *bin) {
malloc_mutex_assert_owner(tsdn, &bin->lock);
assert(slab != bin->slabcur);
if (config_stats) {
bin->stats.curslabs--;
}
}
/* Returns true if arena_slab_dalloc must be called on slab */
static bool
arena_dalloc_bin_locked_impl(tsdn_t *tsdn, arena_t *arena, bin_t *bin,
szind_t binind, edata_t *slab, void *ptr) {
const bin_info_t *bin_info = &bin_infos[binind];
arena_slab_reg_dalloc(slab, edata_slab_data_get(slab), ptr);
bool ret = false;
unsigned nfree = edata_nfree_get(slab);
if (nfree == bin_info->nregs) {
arena_dissociate_bin_slab(arena, slab, bin);
arena_dalloc_bin_slab_prepare(tsdn, slab, bin);
ret = true;
} else if (nfree == 1 && slab != bin->slabcur) {
arena_bin_slabs_full_remove(arena, bin, slab);
arena_bin_lower_slab(tsdn, arena, slab, bin);
}
if (config_stats) {
bin->stats.ndalloc++;
bin->stats.curregs--;
}
return ret;
}
bool
arena_dalloc_bin_locked(tsdn_t *tsdn, arena_t *arena, bin_t *bin,
szind_t binind, edata_t *edata, void *ptr) {
return arena_dalloc_bin_locked_impl(tsdn, arena, bin, binind, edata,
ptr);
}
static void
arena_dalloc_bin(tsdn_t *tsdn, arena_t *arena, edata_t *edata, void *ptr) {
szind_t binind = edata_szind_get(edata);
unsigned binshard = edata_binshard_get(edata);
bin_t *bin = &arena->bins[binind].bin_shards[binshard];
malloc_mutex_lock(tsdn, &bin->lock);
bool ret = arena_dalloc_bin_locked_impl(tsdn, arena, bin, binind, edata,
ptr);
malloc_mutex_unlock(tsdn, &bin->lock);
if (ret) {
arena_slab_dalloc(tsdn, arena, edata);
}
}
void
arena_dalloc_small(tsdn_t *tsdn, void *ptr) {
edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global, ptr);
arena_t *arena = arena_get_from_edata(edata);
arena_dalloc_bin(tsdn, arena, edata, ptr);
arena_decay_tick(tsdn, arena);
}
bool
arena_ralloc_no_move(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size,
size_t extra, bool zero, size_t *newsize) {
bool ret;
/* Calls with non-zero extra had to clamp extra. */
assert(extra == 0 || size + extra <= SC_LARGE_MAXCLASS);
edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global, ptr);
if (unlikely(size > SC_LARGE_MAXCLASS)) {
ret = true;
goto done;
}
size_t usize_min = sz_s2u(size);
size_t usize_max = sz_s2u(size + extra);
if (likely(oldsize <= SC_SMALL_MAXCLASS && usize_min
<= SC_SMALL_MAXCLASS)) {
/*
* Avoid moving the allocation if the size class can be left the
* same.
*/
assert(bin_infos[sz_size2index(oldsize)].reg_size ==
oldsize);
if ((usize_max > SC_SMALL_MAXCLASS
|| sz_size2index(usize_max) != sz_size2index(oldsize))
&& (size > oldsize || usize_max < oldsize)) {
ret = true;
goto done;
}
arena_t *arena = arena_get_from_edata(edata);
arena_decay_tick(tsdn, arena);
ret = false;
} else if (oldsize >= SC_LARGE_MINCLASS
&& usize_max >= SC_LARGE_MINCLASS) {
ret = large_ralloc_no_move(tsdn, edata, usize_min, usize_max,
zero);
} else {
ret = true;
}
done:
assert(edata == emap_edata_lookup(tsdn, &arena_emap_global, ptr));
*newsize = edata_usize_get(edata);
return ret;
}
static void *
arena_ralloc_move_helper(tsdn_t *tsdn, arena_t *arena, size_t usize,
size_t alignment, bool zero, tcache_t *tcache) {
if (alignment == 0) {
return arena_malloc(tsdn, arena, usize, sz_size2index(usize),
zero, tcache, true);
}
usize = sz_sa2u(usize, alignment);
if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) {
return NULL;
}
return ipalloct(tsdn, usize, alignment, zero, tcache, arena);
}
void *
arena_ralloc(tsdn_t *tsdn, arena_t *arena, void *ptr, size_t oldsize,
size_t size, size_t alignment, bool zero, tcache_t *tcache,
hook_ralloc_args_t *hook_args) {
size_t usize = alignment == 0 ? sz_s2u(size) : sz_sa2u(size, alignment);
if (unlikely(usize == 0 || size > SC_LARGE_MAXCLASS)) {
return NULL;
}
if (likely(usize <= SC_SMALL_MAXCLASS)) {
/* Try to avoid moving the allocation. */
UNUSED size_t newsize;
if (!arena_ralloc_no_move(tsdn, ptr, oldsize, usize, 0, zero,
&newsize)) {
hook_invoke_expand(hook_args->is_realloc
? hook_expand_realloc : hook_expand_rallocx,
ptr, oldsize, usize, (uintptr_t)ptr,
hook_args->args);
return ptr;
}
}
if (oldsize >= SC_LARGE_MINCLASS
&& usize >= SC_LARGE_MINCLASS) {
return large_ralloc(tsdn, arena, ptr, usize,
alignment, zero, tcache, hook_args);
}
/*
* size and oldsize are different enough that we need to move the
* object. In that case, fall back to allocating new space and copying.
*/
void *ret = arena_ralloc_move_helper(tsdn, arena, usize, alignment,
zero, tcache);
if (ret == NULL) {
return NULL;
}
hook_invoke_alloc(hook_args->is_realloc
? hook_alloc_realloc : hook_alloc_rallocx, ret, (uintptr_t)ret,
hook_args->args);
hook_invoke_dalloc(hook_args->is_realloc
? hook_dalloc_realloc : hook_dalloc_rallocx, ptr, hook_args->args);
/*
* Junk/zero-filling were already done by
* ipalloc()/arena_malloc().
*/
size_t copysize = (usize < oldsize) ? usize : oldsize;
memcpy(ret, ptr, copysize);
isdalloct(tsdn, ptr, oldsize, tcache, NULL, true);
return ret;
}
ehooks_t *
arena_get_ehooks(arena_t *arena) {
return base_ehooks_get(arena->base);
}
extent_hooks_t *
arena_set_extent_hooks(tsd_t *tsd, arena_t *arena,
extent_hooks_t *extent_hooks) {
background_thread_info_t *info;
if (have_background_thread) {
info = arena_background_thread_info_get(arena);
malloc_mutex_lock(tsd_tsdn(tsd), &info->mtx);
}
extent_hooks_t *ret = base_extent_hooks_set(arena->base, extent_hooks);
if (have_background_thread) {
malloc_mutex_unlock(tsd_tsdn(tsd), &info->mtx);
}
return ret;
}
dss_prec_t
arena_dss_prec_get(arena_t *arena) {
return (dss_prec_t)atomic_load_u(&arena->dss_prec, ATOMIC_ACQUIRE);
}
bool
arena_dss_prec_set(arena_t *arena, dss_prec_t dss_prec) {
if (!have_dss) {
return (dss_prec != dss_prec_disabled);
}
atomic_store_u(&arena->dss_prec, (unsigned)dss_prec, ATOMIC_RELEASE);
return false;
}
ssize_t
arena_dirty_decay_ms_default_get(void) {
return atomic_load_zd(&dirty_decay_ms_default, ATOMIC_RELAXED);
}
bool
arena_dirty_decay_ms_default_set(ssize_t decay_ms) {
if (!decay_ms_valid(decay_ms)) {
return true;
}
atomic_store_zd(&dirty_decay_ms_default, decay_ms, ATOMIC_RELAXED);
return false;
}
ssize_t
arena_muzzy_decay_ms_default_get(void) {
return atomic_load_zd(&muzzy_decay_ms_default, ATOMIC_RELAXED);
}
bool
arena_muzzy_decay_ms_default_set(ssize_t decay_ms) {
if (!decay_ms_valid(decay_ms)) {
return true;
}
atomic_store_zd(&muzzy_decay_ms_default, decay_ms, ATOMIC_RELAXED);
return false;
}
bool
arena_retain_grow_limit_get_set(tsd_t *tsd, arena_t *arena, size_t *old_limit,
size_t *new_limit) {
assert(opt_retain);
return pac_retain_grow_limit_get_set(tsd_tsdn(tsd),
&arena->pa_shard.pac, old_limit, new_limit);
}
unsigned
arena_nthreads_get(arena_t *arena, bool internal) {
return atomic_load_u(&arena->nthreads[internal], ATOMIC_RELAXED);
}
void
arena_nthreads_inc(arena_t *arena, bool internal) {
atomic_fetch_add_u(&arena->nthreads[internal], 1, ATOMIC_RELAXED);
}
void
arena_nthreads_dec(arena_t *arena, bool internal) {
atomic_fetch_sub_u(&arena->nthreads[internal], 1, ATOMIC_RELAXED);
}
arena_t *
arena_new(tsdn_t *tsdn, unsigned ind, extent_hooks_t *extent_hooks) {
arena_t *arena;
base_t *base;
unsigned i;
if (ind == 0) {
base = b0get();
} else {
base = base_new(tsdn, ind, extent_hooks);
if (base == NULL) {
return NULL;
}
}
unsigned nbins_total = 0;
for (i = 0; i < SC_NBINS; i++) {
nbins_total += bin_infos[i].n_shards;
}
size_t arena_size = sizeof(arena_t) + sizeof(bin_t) * nbins_total;
arena = (arena_t *)base_alloc(tsdn, base, arena_size, CACHELINE);
if (arena == NULL) {
goto label_error;
}
atomic_store_u(&arena->nthreads[0], 0, ATOMIC_RELAXED);
atomic_store_u(&arena->nthreads[1], 0, ATOMIC_RELAXED);
arena->last_thd = NULL;
if (config_stats) {
if (arena_stats_init(tsdn, &arena->stats)) {
goto label_error;
}
ql_new(&arena->tcache_ql);
ql_new(&arena->cache_bin_array_descriptor_ql);
if (malloc_mutex_init(&arena->tcache_ql_mtx, "tcache_ql",
WITNESS_RANK_TCACHE_QL, malloc_mutex_rank_exclusive)) {
goto label_error;
}
}
atomic_store_u(&arena->dss_prec, (unsigned)extent_dss_prec_get(),
ATOMIC_RELAXED);
edata_list_active_init(&arena->large);
if (malloc_mutex_init(&arena->large_mtx, "arena_large",
WITNESS_RANK_ARENA_LARGE, malloc_mutex_rank_exclusive)) {
goto label_error;
}
nstime_t cur_time;
nstime_init_update(&cur_time);
if (pa_shard_init(tsdn, &arena->pa_shard, &arena_emap_global, base, ind,
&arena->stats.pa_shard_stats, LOCKEDINT_MTX(arena->stats.mtx),
&cur_time, arena_dirty_decay_ms_default_get(),
arena_muzzy_decay_ms_default_get())) {
goto label_error;
}
/* Initialize bins. */
uintptr_t bin_addr = (uintptr_t)arena + sizeof(arena_t);
atomic_store_u(&arena->binshard_next, 0, ATOMIC_RELEASE);
for (i = 0; i < SC_NBINS; i++) {
unsigned nshards = bin_infos[i].n_shards;
arena->bins[i].bin_shards = (bin_t *)bin_addr;
bin_addr += nshards * sizeof(bin_t);
for (unsigned j = 0; j < nshards; j++) {
bool err = bin_init(&arena->bins[i].bin_shards[j]);
if (err) {
goto label_error;
}
}
}
assert(bin_addr == (uintptr_t)arena + arena_size);
arena->base = base;
/* Set arena before creating background threads. */
arena_set(ind, arena);
nstime_init_update(&arena->create_time);
/* We don't support reentrancy for arena 0 bootstrapping. */
if (ind != 0) {
/*
* If we're here, then arena 0 already exists, so bootstrapping
* is done enough that we should have tsd.
*/
assert(!tsdn_null(tsdn));
pre_reentrancy(tsdn_tsd(tsdn), arena);
if (test_hooks_arena_new_hook) {
test_hooks_arena_new_hook();
}
post_reentrancy(tsdn_tsd(tsdn));
}
return arena;
label_error:
if (ind != 0) {
base_delete(tsdn, base);
}
return NULL;
}
arena_t *
arena_choose_huge(tsd_t *tsd) {
/* huge_arena_ind can be 0 during init (will use a0). */
if (huge_arena_ind == 0) {
assert(!malloc_initialized());
}
arena_t *huge_arena = arena_get(tsd_tsdn(tsd), huge_arena_ind, false);
if (huge_arena == NULL) {
/* Create the huge arena on demand. */
assert(huge_arena_ind != 0);
huge_arena = arena_get(tsd_tsdn(tsd), huge_arena_ind, true);
if (huge_arena == NULL) {
return NULL;
}
/*
* Purge eagerly for huge allocations, because: 1) number of
* huge allocations is usually small, which means ticker based
* decay is not reliable; and 2) less immediate reuse is
* expected for huge allocations.
*/
if (arena_dirty_decay_ms_default_get() > 0) {
arena_decay_ms_set(tsd_tsdn(tsd), huge_arena,
extent_state_dirty, 0);
}
if (arena_muzzy_decay_ms_default_get() > 0) {
arena_decay_ms_set(tsd_tsdn(tsd), huge_arena,
extent_state_muzzy, 0);
}
}
return huge_arena;
}
bool
arena_init_huge(void) {
bool huge_enabled;
/* The threshold should be large size class. */
if (opt_oversize_threshold > SC_LARGE_MAXCLASS ||
opt_oversize_threshold < SC_LARGE_MINCLASS) {
opt_oversize_threshold = 0;
oversize_threshold = SC_LARGE_MAXCLASS + PAGE;
huge_enabled = false;
} else {
/* Reserve the index for the huge arena. */
huge_arena_ind = narenas_total_get();
oversize_threshold = opt_oversize_threshold;
huge_enabled = true;
}
return huge_enabled;
}
bool
arena_is_huge(unsigned arena_ind) {
if (huge_arena_ind == 0) {
return false;
}
return (arena_ind == huge_arena_ind);
}
void
arena_boot(sc_data_t *sc_data) {
arena_dirty_decay_ms_default_set(opt_dirty_decay_ms);
arena_muzzy_decay_ms_default_set(opt_muzzy_decay_ms);
for (unsigned i = 0; i < SC_NBINS; i++) {
sc_t *sc = &sc_data->sc[i];
div_init(&arena_binind_div_info[i],
(1U << sc->lg_base) + (sc->ndelta << sc->lg_delta));
}
}
void
arena_prefork0(tsdn_t *tsdn, arena_t *arena) {
pa_shard_prefork0(tsdn, &arena->pa_shard);
}
void
arena_prefork1(tsdn_t *tsdn, arena_t *arena) {
if (config_stats) {
malloc_mutex_prefork(tsdn, &arena->tcache_ql_mtx);
}
}
void
arena_prefork2(tsdn_t *tsdn, arena_t *arena) {
pa_shard_prefork2(tsdn, &arena->pa_shard);
}
void
arena_prefork3(tsdn_t *tsdn, arena_t *arena) {
pa_shard_prefork3(tsdn, &arena->pa_shard);
}
void
arena_prefork4(tsdn_t *tsdn, arena_t *arena) {
pa_shard_prefork4(tsdn, &arena->pa_shard);
}
void
arena_prefork5(tsdn_t *tsdn, arena_t *arena) {
base_prefork(tsdn, arena->base);
}
void
arena_prefork6(tsdn_t *tsdn, arena_t *arena) {
malloc_mutex_prefork(tsdn, &arena->large_mtx);
}
void
arena_prefork7(tsdn_t *tsdn, arena_t *arena) {
for (unsigned i = 0; i < SC_NBINS; i++) {
for (unsigned j = 0; j < bin_infos[i].n_shards; j++) {
bin_prefork(tsdn, &arena->bins[i].bin_shards[j]);
}
}
}
void
arena_postfork_parent(tsdn_t *tsdn, arena_t *arena) {
unsigned i;
for (i = 0; i < SC_NBINS; i++) {
for (unsigned j = 0; j < bin_infos[i].n_shards; j++) {
bin_postfork_parent(tsdn,
&arena->bins[i].bin_shards[j]);
}
}
malloc_mutex_postfork_parent(tsdn, &arena->large_mtx);
base_postfork_parent(tsdn, arena->base);
pa_shard_postfork_parent(tsdn, &arena->pa_shard);
if (config_stats) {
malloc_mutex_postfork_parent(tsdn, &arena->tcache_ql_mtx);
}
}
void
arena_postfork_child(tsdn_t *tsdn, arena_t *arena) {
unsigned i;
atomic_store_u(&arena->nthreads[0], 0, ATOMIC_RELAXED);
atomic_store_u(&arena->nthreads[1], 0, ATOMIC_RELAXED);
if (tsd_arena_get(tsdn_tsd(tsdn)) == arena) {
arena_nthreads_inc(arena, false);
}
if (tsd_iarena_get(tsdn_tsd(tsdn)) == arena) {
arena_nthreads_inc(arena, true);
}
if (config_stats) {
ql_new(&arena->tcache_ql);
ql_new(&arena->cache_bin_array_descriptor_ql);
tcache_slow_t *tcache_slow = tcache_slow_get(tsdn_tsd(tsdn));
if (tcache_slow != NULL && tcache_slow->arena == arena) {
tcache_t *tcache = tcache_slow->tcache;
ql_elm_new(tcache_slow, link);
ql_tail_insert(&arena->tcache_ql, tcache_slow, link);
cache_bin_array_descriptor_init(
&tcache_slow->cache_bin_array_descriptor,
tcache->bins);
ql_tail_insert(&arena->cache_bin_array_descriptor_ql,
&tcache_slow->cache_bin_array_descriptor, link);
}
}
for (i = 0; i < SC_NBINS; i++) {
for (unsigned j = 0; j < bin_infos[i].n_shards; j++) {
bin_postfork_child(tsdn, &arena->bins[i].bin_shards[j]);
}
}
malloc_mutex_postfork_child(tsdn, &arena->large_mtx);
base_postfork_child(tsdn, arena->base);
pa_shard_postfork_child(tsdn, &arena->pa_shard);
if (config_stats) {
malloc_mutex_postfork_child(tsdn, &arena->tcache_ql_mtx);
}
}