This will eventually completely wrap the eset, and handle concurrency,
allocation, and deallocation. For now, we only pull out the mutex from the
eset.
We have to work to circumvent the safety checks in pre_reentrancy when going
down extent hook pathways. Instead, let's explicitly have checked and unchecked
guards.
When deferred initialization was added, initializing required copying
sizeof(extent_hooks_t) bytes after a pointer chase. Today, it's just a single
pointer loaded from the base_t. In subsequent diffs, we'll get rid of even that.
Explicitly define three setters:
- `prof_tctx_reset()`: set `prof_tctx` to `1U`, if we don't know in
advance whether the allocation is large or not;
- `prof_tctx_reset_sampled()`: set `prof_tctx` to `1U`, if we already
know in advance that the allocation is large;
- `prof_info_set()`: set a real `prof_tctx`, and also set other
profiling info e.g. the allocation time.
Code structure wise, the prof level is kept as a thin wrapper, the
large level only provides low level setter APIs, and the arena level
carries out the main logic.
Fold the tsd_state check onto the event threshold check. The fast threshold is
set to 0 when tsd switch to non-nominal.
The fast_threshold can be reset by remote threads, to refect the non nominal tsd
state change.
Develop new data structure and code logic for holding profiling
related information stored in the extent that may be needed after the
extent is released, which in particular is the case for the
reallocation code path (e.g. in `rallocx()` and `xallocx()`). The
data structure is a generalization of `prof_tctx_t`: we previously
only copy out the `prof_tctx` before the extent is released, but we
may be in need of additional fields. Currently the only additional
field is the allocation time field, but there may be more fields in
the future.
The restructuring also resolved a bug: `prof_realloc()` mistakenly
passed the new `ptr` to `prof_free_sampled_object()`, but passing in
the `old_ptr` would crash because it's already been released. Now
the essential profiling information is collectively copied out early
and safely passed to `prof_free_sampled_object()` after the extent is
released.
Summary:
Add support for C++17 over-aligned allocation:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0035r4.html
Supporting all 10 operators means we avoid thunking thru libstdc++-v3/libsupc++ and just call jemalloc directly.
It's also worth noting that there is now an aligned *and sized* operator delete:
```
void operator delete(void* ptr, std::size_t size, std::align_val_t al) noexcept;
```
If JeMalloc did not provide this, the default implementation would ignore the size parameter entirely:
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/libsupc%2B%2B/del_opsa.cc#L30-L33
(I must also update ax_cxx_compile_stdcxx.m4 to a newer version with C++17 support.)
Test Plan:
Wrote a simple test that allocates and then deletes an over-aligned type:
```
struct alignas(32) Foo {};
Foo *f;
int main()
{
f = new Foo;
delete f;
}
```
Before this change, both new and delete go thru PLT, and we end up calling regular old free:
```
(gdb) disassemble
Dump of assembler code for function main():
...
0x00000000004029b7 <+55>: call 0x4022d0 <_ZnwmSt11align_val_t@plt>
...
0x00000000004029d5 <+85>: call 0x4022e0 <_ZdlPvmSt11align_val_t@plt>
...
(gdb) s
free (ptr=0x7ffff6408020) at /home/engshare/third-party2/jemalloc/master/src/jemalloc.git-trunk/src/jemalloc.c:2842
2842 if (!free_fastpath(ptr, 0, false)) {
```
After this change, we directly call new/delete and ultimately call sdallocx:
```
(gdb) disassemble
Dump of assembler code for function main():
...
0x0000000000402b77 <+55>: call 0x496ca0 <operator new(unsigned long, std::align_val_t)>
...
0x0000000000402b95 <+85>: call 0x496e60 <operator delete(void*, unsigned long, std::align_val_t)>
...
(gdb) s
116 je_sdallocx_noflags(ptr, size);
```
Makes the prof sample prng use the tsd prng_state. This allows us to properly
initialize the sample interval event, without having to create tdata. As a
result, tdata will be created on demand (when a thread reaches the sample
interval bytes allocated), instead of on the first allocation.
Clang since r369414 (clang-10) can now check -Wimplicit-fallthrough for
C code, and use the GNU C style attribute to denote fallthrough.
Move the test from header only to autoconf. The previous test used
brittle version detection which did not work for newer clang that
supported this feature.
The attribute has to be its own statement, hence the added `;`. It also
can only precede case statements, so the final cases should be
explicitly terminated with break statements.
Fixes commit 3d29d11ac2 ("Clean compilation -Wextra")
Link: 1e0affb6e5
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
`tcache_bin_info` is not accessed on malloc fast path but the
compiler reserves a register for it, as well as an additional
register for `tcache_bin_info[ind].stack_size`. The optimization
gets rid of the need for the two registers.
This change suppresses tdata initialization and prof sample threshold
update in interrupting malloc calls. Interrupting calls have no need
for tdata. Delaying tdata creation aligns better with our lazy tdata
creation principle, and it also helps us gain control back from
interrupting calls more quickly and reduces any risk of delegating
tdata creation to an interrupting call.
Specifically, the extent_arena_[g|s]et functions and the address randomization.
These are the only things that tie the extent struct itself to the arena code.
Added a new stats row to aggregate the maximum value of mutex counters for each
background threads. Given that the per bg thd mutex is not expected to be
contended, this counter is mainly for sanity check / debugging.
The -1 value of low_water indicates if the cache has been depleted and
refilled. Track the status explicitly in the tcache struct.
This allows the fast path to check if (cur_ptr > low_water), instead of >=,
which avoids reaching slow path when the last item is allocated.
With the cache bin metadata switched to pointers, ncached_max is usually
accessed and timed by sizeof(ptr). Store the results in tcache_bin_info for
direct access, and add a helper function for the ncached_max value.
Implement the pointer-based metadata for tcache bins --
- 3 pointers are maintained to represent each bin;
- 2 of the pointers are compressed on 64-bit;
- is_full / is_empty done through pointer comparison;
Comparing to the previous counter based design --
- fast-path speed up ~15% in benchmarks
- direct pointer comparison and de-reference
- no need to access tcache_bin_info in common case
JSON format is largely meant for machine-machine communication, so
adding the option to the emitter. According to local testing, the
savings in terms of bytes outputted is around 50% for stats printing
and around 25% for prof log printing.
Refactored core profiling codebase into two logical parts:
(a) `prof_data.c`: core internal data structure managing & dumping;
(b) `prof.c`: mutexes & outward-facing APIs.
Some internal functions had to be exposed out, but there are not
that many of them if the modularization is (hopefully) clean enough.
Prof logging is conceptually seperate from core profiling, so
split it out as a module of its own. There are a few internal
functions that had to be exposed but I think it is a fair trade-off.
Augmented the tsd layout graph so that the two recently added fields,
`offset_state` and `bytes_until_sample`, are properly reflected.
As is shown, the cache footprint is 16 bytes larger than before.
Refactored core profiling codebase into two logical parts:
(a) `prof_data.c`: core internal data structure managing & dumping;
(b) `prof.c`: mutexes & outward-facing APIs.
Some internal functions had to be exposed out, but there are not
that many of them if the modularization is (hopefully) clean enough.
`prof.c` is growing too long, so trying to modularize it. There are
a few internal functions that had to be exposed but I think it is a
fair trade-off.
The VirtualAlloc and VirtualFree APIs are different because MEM_DECOMMIT cannot
be used across multiple VirtualAlloc regions. To properly support decommit,
only allow merge / split within the same region -- this is done by tracking the
"is_head" state of extents and not merging cross-region.
Add a new state is_head (only relevant for retain && !maps_coalesce), which is
true for the first extent in each VirtualAlloc region. Determine if two extents
can be merged based on the head state, and use serial numbers for sanity checks.
`cbopaque` can now be overriden without overriding `write_cb` in
the first place. (Otherwise there would be no need to have the
`cbopaque` parameter in `malloc_message`.)
If the confirm_conf option is set, when the program starts, each of
the four malloc_conf strings will be printed, and each option will
be printed when being set.
Small is added purely for convenience. Large flushes wasn't tracked before and
can be useful in analysis. Large fill simply reports nmalloc, since there is no
batch fill for large currently.
When config_stats is enabled track the size of bin->slabs_nonfull in
the new nonfull_slabs counter in bin_stats_t. This metric should be
useful for establishing an upper ceiling on the savings possible by
meshing.
Mainly fixing typos. The only non-trivial change is in the
computation for SC_NPSIZES, though the result wouldn't be any
different when SC_NGROUP = 4 as is always the case at the moment.
Summary: sdallocx is checking a flag that will never be set (at least in the provided C++ destructor implementation). This branch will probably only rarely be mispredicted however it removes two instructions in sdallocx and one at the callsite (to zero out flags).
The analytics tool is put under experimental.utilization namespace in
mallctl. Input is one pointer or an array of pointers and the output
is a list of memory utilization statistics.
This fixes a build failure when integrating with FreeBSD's libc. This
regression was introduced by d1e11d48d4
(Move tsd link and in_hook after tcache.).
This feature uses an dedicated arena to handle huge requests, which
significantly improves VM fragmentation. In production workload we tested it
often reduces VM size by >30%.
For low arena count settings, the huge threshold feature may trigger an unwanted
bg thd creation. Given that the huge arena does eager purging by default,
bypass bg thd creation when initializing the huge arena.
When custom extent_hooks or transparent huge pages are in use, the purging
semantics may change, which means we may not get zeroed pages on repopulating.
Fixing the issue by manually memset for such cases.
This makes it possible to have multiple set of bins in an arena, which improves
arena scalability because the bins (especially the small ones) are always the
limiting factor in production workload.
A bin shard is picked on allocation; each extent tracks the bin shard id for
deallocation. The shard size will be determined using runtime options.
If there are 3 or more threads spin-waiting on the same mutex,
there will be excessive exclusive cacheline contention because
pthread_trylock() immediately tries to CAS in a new value, instead
of first checking if the lock is locked.
This diff adds a 'locked' hint flag, and we will only spin wait
without trylock()ing while set. I don't know of any other portable
way to get the same behavior as pthread_mutex_lock().
This is pretty easy to test via ttest, e.g.
./ttest1 500 3 10000 1 100
Throughput is nearly 3x as fast.
This blames to the mutex profiling changes, however, we almost never
have 3 or more threads contending in properly configured production
workloads, but still worth fixing.
For a free fastpath, we want something that will not make additional
calls. Assume most free() calls will hit the L1 cache, and use
a custom rtree function for this.
Additionally, roll the ptr=NULL check in to the rtree cache check.
Nearly all 32-bit powerpc hardware treats lwsync as sync, and some cores
(Freescale e500) trap lwsync as an illegal instruction, which then gets
emulated in the kernel. To avoid unnecessary traps on the e500, use
sync on all 32-bit powerpc. This pessimizes 32-bit software running on
64-bit hardware, but those numbers should be slim.
The diff 'refactor prof accum...' moved the bytes_until_sample
subtraction before the load of tdata. If tdata is null,
tdata_get(true) will overwrite bytes_until_sample, but we
still sample the current allocation. Instead, do the subtraction
and check logic again, to keep the previous behavior.
blame-rev: 0ac524308d
The experimental `smallocx` API is not exposed via header files,
requiring the users to peek at `jemalloc`'s source code to manually
add the external declarations to their own programs.
This should reinforce that `smallocx` is experimental, and that `jemalloc`
does not offer any kind of backwards compatiblity or ABI gurantees for it.
---
Motivation:
This new experimental memory-allocaction API returns a pointer to
the allocation as well as the usable size of the allocated memory
region.
The `s` in `smallocx` stands for `sized`-`mallocx`, attempting to
convey that this API returns the size of the allocated memory region.
It should allow C++ P0901r0 [0] and Rust Alloc::alloc_excess to make
use of it.
The main purpose of these APIs is to improve telemetry. It is more accurate
to register `smallocx(size, flags)` than `smallocx(nallocx(size), flags)`,
for example. The latter will always line up perfectly with the existing
size classes, causing a loss of telemetry information about the internal
fragmentation induced by potentially poor size-classes choices.
Instrumenting `nallocx` does not help much since user code can cache its
result and use it repeatedly.
---
Implementation:
The implementation adds a new `usize` option to `static_opts_s` and an `usize`
variable to `dynamic_opts_s`. These are then used to cache the result of
`sz_index2size` and similar functions in the code paths in which they are
unconditionally invoked. In the code-paths in which these functions are not
unconditionally invoked, `smallocx` calls, as opposed to `mallocx`, these
functions explicitly.
---
[0]: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0901r0.html
generation of sub bytes_until_sample, usize; je; for x86 arch.
Subtraction is unconditional, and only flags are checked for the jump,
no extra compare is necessary. This also reduces register pressure.
- Make API more clear for using as standalone json emitter
- Support cases that weren't possible before, e.g.
- emitting primitive values in an array
- emitting nested arrays
In case of multithreaded fork, we want to leave the child in a reasonable state,
in which tsd_nominal_tsds is either empty or contains only the forking thread.
The global data is mostly only used at initialization, or for easy access to
values we could compute statically. Instead of consuming that space (and
risking TLB misses), we can just pass around a pointer to stack data during
bootstrapping.
The largest small class, smallest large class, and largest large class may all
be needed down fast paths; to avoid the risk of touching another cache line, we
can make them available as constants.
This class removes almost all the dependencies on size_classes.h, accessing the
data there only via the new module sc.h, which does not depend on any
configuration options.
In a subsequent commit, we'll remove the configure-time size class computations,
doing them at boot time, instead.
Before this commit jemalloc produced many warnings when compiled with -Wextra
with both Clang and GCC. This commit fixes the issues raised by these warnings
or suppresses them if they were spurious at least for the Clang and GCC
versions covered by CI.
This commit:
* adds `JEMALLOC_DIAGNOSTIC` macros: `JEMALLOC_DIAGNOSTIC_{PUSH,POP}` are
used to modify the stack of enabled diagnostics. The
`JEMALLOC_DIAGNOSTIC_IGNORE_...` macros are used to ignore a concrete
diagnostic.
* adds `JEMALLOC_FALLTHROUGH` macro to explicitly state that falling
through `case` labels in a `switch` statement is intended
* Removes all UNUSED annotations on function parameters. The warning
-Wunused-parameter is now disabled globally in
`jemalloc_internal_macros.h` for all translation units that include
that header. It is never re-enabled since that header cannot be
included by users.
* locally suppresses some -Wextra diagnostics:
* `-Wmissing-field-initializer` is buggy in older Clang and GCC versions,
where it does not understanding that, in C, `= {0}` is a common C idiom
to initialize a struct to zero
* `-Wtype-bounds` is suppressed in a particular situation where a generic
macro, used in multiple different places, compares an unsigned integer for
smaller than zero, which is always true.
* `-Walloc-larger-than-size=` diagnostics warn when an allocation function is
called with a size that is too large (out-of-range). These are suppressed in
the parts of the tests where `jemalloc` explicitly does this to test that the
allocation functions fail properly.
* adds a new CI build bot that runs the log unit test on CI.
Closes#1196 .
The feature allows using a dedicated arena for huge allocations. We want the
addtional arena to separate huge allocation because: 1) mixing small extents
with huge ones causes fragmentation over the long run (this feature reduces VM
size significantly); 2) with many arenas, huge extents rarely get reused across
threads; and 3) huge allocations happen way less frequently, therefore no
concerns for lock contention.
Previously, we made the user deal with this themselves, but that's not good
enough; if hooks may allocate, we should test the allocation pathways down
hooks. If we're doing that, we might as well actually implement the protection
for the user.
The hook module allows a low-reader-overhead way of finding hooks to invoke and
calling them.
For now, none of the allocation pathways are tied into the hooks; this will come
later.
"Hooks" is really the best name for the module that will contain the publicly
exposed hooks. So lets rename the current "hooks" module (that hook external
dependencies, for reentrancy testing) to "test_hooks".
We're about to need an atomic uint8_t for state operations.
Unfortunately, we're at the point where things won't get inlined into the key
methods unless they're force-inlined. This is embarassing and we should do
something about it, but in the meantime we'll force-inline a little more when we
need to.
Looking at the thread counts in our services, jemalloc's background thread
is useful, but mostly idle. Add a config option to tune down the number of threads.
szind and slab bits are read on fast path, where compiler generated two memory
loads separately for them before this diff. Manually operate on the bits to
avoid the extra memory load.
The emitter can be used to produce structured json or tabular output. For now
it has no uses; in subsequent commits, I'll begin transitioning stats printing
code over.
"always" marks all user mappings as MADV_HUGEPAGE; while "never" marks all
mappings as MADV_NOHUGEPAGE. The default setting "default" does not change any
settings. Note that all the madvise calls are part of the default extent hooks
by design, so that customized extent hooks have complete control over the
mappings including hugepage settings.
On glibc and Android's bionic, strerror_r returns char* when
_GNU_SOURCE is defined.
Add a configure check for this rather than assume glibc is the
only libc that behaves this way.
The arena-associated stats are now all prefixed with arena_stats_, and live in
their own file. Likewise, malloc_bin_stats_t -> bin_stats_t, also in its own
file.
When purging, large allocations are usually the ones that cross the npages_limit
threshold, simply because they are "large". This means we often leave the large
extent around for a while, which has the downsides of: 1) high RSS and 2) more
chance of them getting fragmented. Given that they are not likely to be reused
very soon (LRU), let's over purge by 1 extent (which is often large and not
reused frequently).
When allocating from dirty extents (which we always prefer if available), large
active extents can get split even if the new allocation is much smaller, in
which case the introduced fragmentation causes high long term damage. This new
option controls the threshold to reuse and split an existing active extent. We
avoid using a large extent for much smaller sizes, in order to reduce
fragmentation. In some workload, adding the threshold improves virtual memory
usage by >10x.
While working on #852, I noticed the prng state is atomic. This is the only
atomic use of prng in all of jemalloc. Instead, use a threadlocal prng
state if possible to avoid unnecessary cache line contention.
Added an upper bound on how many pages we can decay during the current run.
Without this, decay could have unbounded increase in stashed, since other
threads could add new pages into the extents.
This option controls the max size when grow_retained. This is useful when we
have customized extent hooks reserving physical memory (e.g. 1G huge pages).
Without this feature, the default increasing sequence could result in fragmented
and wasted physical memory.
We observed that arena 0 can have much more metadata allocated comparing to
other arenas. Tune the auto mode to only switch to huge page on the 5th block
(instead of 3 previously) for a0.
On x86 Linux, we define our own MADV_FREE if madvise(2) is available, but no
MADV_FREE is detected. This allows the feature to be built in and enabled with
runtime detection.
Quoting from https://github.com/jemalloc/jemalloc/issues/761 :
[...] reading the Power ISA documentation[1], the assembly in [the CPU_SPINWAIT
macro] isn't correct anyway (as @marxin points out): the setting of the
program-priority register is "sticky", and we never undo the lowering.
We could do something similar, but given that we don't have testing here in the
first place, I'm inclined to simply not try. I'll put something up reverting the
problematic commit tomorrow.
[1] Book II, chapter 3 of the 2.07B or 3.0B ISA documents.
There does not seem to be any overlap between usage of
extent_avail and extent_heap, so we can use the same hook.
The only remaining usage of rb trees is in the profiling code,
which has some 'interesting' iteration constraints.
Fixes#888
In userspace ARM on Linux, zero-ing the high bits is the correct way to do this.
This doesn't fix the fact that we currently set LG_VADDR to 48 on ARM, when in
fact larger virtual address sizes are coming soon. We'll cross that bridge when
we come to it.
If we guarantee no malloc activity in extent hooks, it's possible to make
customized hooks working on arena 0. Remove the non-a0 assertion to enable such
use cases.
To avoid the high RSS caused by THP + low usage arena (i.e. THP becomes a
significant percentage), added a new "auto" option which will only start using
THP after a base allocator used up the first THP region. Starting from the
second hugepage (in a single arena), "auto" behaves the same as "always",
i.e. madvise hugepage right away.
This eliminates the need for the arena stats code to "know" about tcaches; all
that it needs is a cache_bin_array_descriptor_t to tell it where to find
cache_bins whose stats it should aggregate.
This is the first step towards breaking up the tcache and arena (since they
interact primarily at the bin level). It should also make a future arena
caching implementation more straightforward.
As part of the metadata_thp support, We now have a separate swtich
(JEMALLOC_HAVE_MADVISE_HUGE) for MADV_HUGEPAGE availability. Use that instead
of JEMALLOC_THP (which doesn't guard pages_huge anymore) in tests.
The external linkage for spin_adaptive was not used, and the inline
declaration of spin_adaptive that was used caused a probem on FreeBSD
where CPU_SPINWAIT is implemented as a call to a static procedure for
x86 architectures.
Currently we have to log by writing something like:
static log_var_t log_a_b_c = LOG_VAR_INIT("a.b.c");
log (log_a_b_c, "msg");
This is sort of annoying. Let's just write:
log("a.b.c", "msg");
Currently, the log macro requires at least one argument after the format string,
because of the way the preprocessor handles varargs macros. We can hide some of
that irritation by pushing the extra arguments into a varargs function.
Passing is_background_thread down the decay path, so that background thread
itself won't attempt inactivity_check. This fixes an issue with background
thread doing trylock on a mutex it already owns.
We use the minimal_initilized tsd (which requires no cleanup) for free()
specifically, if tsd hasn't been initialized yet.
Any other activity will transit the state from minimal to normal. This is to
workaround the case where a thread has no malloc calls in its lifetime until
during thread termination, free() happens after tls destructors.
To avoid complications, avoid invoking pthread_create "internally", instead rely
on thread0 to launch new threads, and also terminating threads when asked.
Avoid holding arenas_lock and background_thread_lock when creating background
threads, because pthread_create may take internal locks, and potentially cause
deadlock with jemalloc internal locks.
Fix management of extent_grow_next to serialize operations that may grow
retained memory. This assures that the sizes of the newly allocated
extents correspond to the size classes in the intended growth sequence.
Fix management of extent_grow_next to skip size classes if a request is
too large to be satisfied by the next size in the growth sequence. This
avoids the potential for an arbitrary number of requests to bypass
triggering extent_grow_next increases.
This resolves#858.
When # of dirty pages move below npages_limit (e.g. they are reused), we should
not lower number of unpurged pages because that would cause the reused pages to
be double counted in the backlog (as a result, decay happen slower than it
should). Instead, set number of unpurged to the greater of current npages and
npages_limit.
Added an assertion: the ceiling # of pages should be greater than npages_limit.
To avoid background threads sleeping forever with idle arenas, we eagerly check
background threads' sleep time after extents_dalloc, and signal the thread if
necessary.